Virtualizing complex Linux systems
It's Complicated
If you are ready to migrate your hardware RAID system to the virtual world, standard virtualization and forensics tools are ready for the task.
Ever since the virtualization epidemic hit the datacenter, server filesystems have increasingly taken the form of images, and conventional partitions have been on the decline. The benefit for the admin is that the filesystem images are easier to move or manipulate.However, if you want to use physical disks – typically block devices named /dev/sd<x>
or the like – in your own cloud, you need to convert them to suitable virtual disk image formats, such as .vdi
or .vmdk
.
Popular conversion programs, such as qemu-img --convert
(for KVM), can convert your physical partition to a virtual form, but these tools are not designed to address complex situations. For instance, if you want to build a RAID system from multiple disks, you need to master a few tricks, and this article will help you do so. Incidentally, the approach described here relies on forensic tools, because I developed this technique while investigating a crime case. For virtualization, I will rely on VirtualBox [1] version 4.
Problems with RAID Controllers
Physical systems are not always easy to virtualize. For example, you can experience driver problems if the hard disks come from machines in which the RAID systems are managed by hardware controllers. Some tools do exist for simple scenarios. KVM offers a number of options for smoothing out the process. If you rely on VirtualBox, you can easily convert a hard disk /dev/sdb
by using:
VBoxManage convertdd /dev/sdb test.vdi --format VDI
This command converts the currently mounted disk, which you might have removed from another host, to a virtual hard disk named test.vdi
using VirtualBox's own Virtual Disk Image (VDI) format [2].
Images like this can almost always be integrated easily into any new guest system, but other hypervisors can also handle them. Once this (fairly time-consuming) process is complete, you can export the entire system as an appliance in Open Virtualization Archive (OVA) format [3].
Complex Servers
Unfortunately, a typical server system rarely uses just a single hard disk. You are more likely to find a setup in which one hard disk stores the system, and the data resides on a RAID array. If the original host consists of three hard disks (e.g., a 40GB SATA and two 80GB SATA disks on a RAID controller), you can expect the conversion to be more complex.
If you can bring the legacy host back to life, you have many options. But if you don't have access to the original system (e.g., when the hard disks were part of the evidence in a crime case), the following approach can help. To read alien hard disks, administrators often resort to the RAW format, because it is the simplest possible standard and practically any version of Linux has suitable tools for it.
However, forensics experts tend to prefer the Expert Witness Format (EWF), which was introduced in an article in a previous issue of Linux Pro Magazine [4]. EWF offers a variety of benefits that help admins manage complex tasks. The ewfacquire
program creates images in EWF; you need to install the ewf-tools package from your distribution's repository to access the tool.
Striped Set: RAID 0 – A Tough Nut
The use of a striped set (RAID 0) is not recommended from an administrative point of view, but you still see it on older servers. Because it causes the biggest problems and was used on the original system, I will be using it as an example here. Given a working controller, fdisk
will show the disks that belonged to the striped RAID set (Figure 1). The forensic counterpart to fdisk from The Sleuth Kit is mmls
(Figure 2).
If you take the hard disks out of the legacy system and mount them on another machine without a RAID controller, things change. Although nothing changes for the first hard disk, you will see, as in Figure 3, that disks 2 and 3 (the two 80GB storage media) are no longer a system; in fact, they do not even contain a partition table, according to fdisk.
Buy this article as PDF
(incl. VAT)
Buy Linux Magazine
Subscribe to our Linux Newsletters
Find Linux and Open Source Jobs
Subscribe to our ADMIN Newsletters
Support Our Work
Linux Magazine content is made possible with support from readers like you. Please consider contributing when you’ve found an article to be beneficial.
News
-
First Release Candidate for Linux Kernel 6.14 Now Available
Linus Torvalds has officially released the first release candidate for kernel 6.14 and it includes over 500,000 lines of modified code, making for a small release.
-
System76 Refreshes Meerkat Mini PC
If you're looking for a small form factor PC powered by Linux, System76 has exactly what you need in the Meerkat mini PC.
-
Gnome 48 Alpha Ready for Testing
The latest Gnome desktop alpha is now available with plenty of new features and improvements.
-
Wine 10 Includes Plenty to Excite Users
With its latest release, Wine has the usual crop of bug fixes and improvements, along with some exciting new features.
-
Linux Kernel 6.13 Offers Improvements for AMD/Apple Users
The latest Linux kernel is now available, and it includes plenty of improvements, especially for those who use AMD or Apple-based systems.
-
Gnome 48 Debuts New Audio Player
To date, the audio player found within the Gnome desktop has been meh at best, but with the upcoming release that all changes.
-
Plasma 6.3 Ready for Public Beta Testing
Plasma 6.3 will ship with KDE Gear 24.12.1 and KDE Frameworks 6.10, along with some new and exciting features.
-
Budgie 10.10 Scheduled for Q1 2025 with a Surprising Desktop Update
If Budgie is your desktop environment of choice, 2025 is going to be a great year for you.
-
Firefox 134 Offers Improvements for Linux Version
Fans of Linux and Firefox rejoice, as there's a new version available that includes some handy updates.
-
Serpent OS Arrives with a New Alpha Release
After months of silence, Ikey Doherty has released a new alpha for his Serpent OS.