Set up Amazon Web Services – Part 2
Home Run into the Cloud
DIY Python scripts run in container environments on Amazon's Lambda service – this snapshot example deploys an AI program for motion analysis in video surveillance recordings.
After some initial steps in a previous article [1] to set up an AWS account, an S3 storage server with a static web server, and the first Lambda function, I'll now show you how to set up an API server on Amazon to track down interesting scenes in videos from a surveillance camera.
The Lambda function triggered either by a web request from the browser or a command-line tool like curl
retrieves a video from the web, runs it through an artificial intelligence (AI) algorithm implemented by the OpenCV library, generates a motion profile, and returns the URL of a contact sheet generated as a JPEG with all the interesting movements from the recording (Figures 1 and 2).
Sandbox Games
Unlike Amazon's EC2 instances with their full-blooded (albeit virtual) Linux servers, the Lambda Service [2] provides only a containerized environment. Inside a container, Node.js, Python, or Java programs run in a sandbox, which Amazon pushes around at will between physical servers, eventually going as far as putting the container to sleep in case of inactivity – just to conjure it up again when next accessed. Leaving data on the virtual disk of the container and hoping to find it still there next time would thus result in an unstable application. Instead, Lambda functions communicate with AWS offerings such as S3 storage or the Dynamo database to secure data and are otherwise "stateless."
Developers can upload things that an application cannot describe in a Python script to the (as rumor has it) CentOS-based containers as ZIP files (Figure 3).
A Lambda function that uses artificial intelligence capabilities from the OpenCV library, like the example, needs to compile the required binaries or libraries up front in a Unix environment similar to the Lambda container, package and upload the results, and call it with the Python script at run time. Existing Python bindings to shared libraries are used here, or the Python script calls precompiled binaries as external processes.
Lean and Mean
To prevent the AI program [3] from using too much compute time after installation in the Amazon cloud – and thus also using up money after exceeding the "free tier" quota – the improved code [4] (updated in Listing 1 from the previous article) no longer looks for movements in every frame (i.e., 50 times a second) but hops through the movie in increments of half a second in line 99. After a frame with detected motion, line 96 even skips forward two seconds. To accomplish this, vid.grab()
called in line 50 no longer painstakingly decodes the frame in a complex process, as vid.read()
did previously, but discards it to retrieve the next one.
Listing 1
max-movement-lk.cpp
Whereas the first version [3] only printed the number of seconds into the video in which the algorithm detected motion, to subsequently use MPlayer to extract the frames as JPEG files, lines 92 to 94 now use the imwrite()
image processing functions included with OpenCV to write detected frames immediately as 000x.jpg
to the virtual disk. A second run and the shenanigans for installing MPlayer in the Lambda container are thus no longer required.
Based on these JPEG images, another Python script, mk-montage.py
, then produces a contact sheet, also in .jpg
format, with the help of the ImageMagick library. The Lambda program puts this file into Amazon's S3 cloud storage, and then sends a link to the file to the calling client.
RAM Is Money
How does a Python programmer now pick up a document from the web? A first approach would be the read()
method provided by urlopen()
, which then sends all the bytes it has obtained to a local file through write()
. But, this would mean that a potentially large video file would be completely read into memory before Python finally starts writing it to disk.
The ample supply of RAM needed for this costs money on Amazon. To avoid this, the urlretrieve()
method from the urllib
module used in Listing 2 can buffer smaller data chunks – in a hopefully more or less intelligent way.
Listing 2
vimo.py
Buy this article as PDF
(incl. VAT)
Buy Linux Magazine
Subscribe to our Linux Newsletters
Find Linux and Open Source Jobs
Subscribe to our ADMIN Newsletters
Support Our Work
Linux Magazine content is made possible with support from readers like you. Please consider contributing when you’ve found an article to be beneficial.
News
-
Red Hat Enterprise Linux 9.5 Released
Notify your friends, loved ones, and colleagues that the latest version of RHEL is available with plenty of enhancements.
-
Linux Sees Massive Performance Increase from a Single Line of Code
With one line of code, Intel was able to increase the performance of the Linux kernel by 4,000 percent.
-
Fedora KDE Approved as an Official Spin
If you prefer the Plasma desktop environment and the Fedora distribution, you're in luck because there's now an official spin that is listed on the same level as the Fedora Workstation edition.
-
New Steam Client Ups the Ante for Linux
The latest release from Steam has some pretty cool tricks up its sleeve.
-
Gnome OS Transitioning Toward a General-Purpose Distro
If you're looking for the perfectly vanilla take on the Gnome desktop, Gnome OS might be for you.
-
Fedora 41 Released with New Features
If you're a Fedora fan or just looking for a Linux distribution to help you migrate from Windows, Fedora 41 might be just the ticket.
-
AlmaLinux OS Kitten 10 Gives Power Users a Sneak Preview
If you're looking to kick the tires of AlmaLinux's upstream version, the developers have a purrfect solution.
-
Gnome 47.1 Released with a Few Fixes
The latest release of the Gnome desktop is all about fixing a few nagging issues and not about bringing new features into the mix.
-
System76 Unveils an Ampere-Powered Thelio Desktop
If you're looking for a new desktop system for developing autonomous driving and software-defined vehicle solutions. System76 has you covered.
-
VirtualBox 7.1.4 Includes Initial Support for Linux kernel 6.12
The latest version of VirtualBox has arrived and it not only adds initial support for kernel 6.12 but another feature that will make using the virtual machine tool much easier.