
T
he Git version control system eas-
ily outperforms old-timers such
as CVS, Subversion, or Perforce.
Having the entire project’s history

available offline and Git’s branch strat-
egy are such powerful features that
many programmers wonder how they
ever managed to develop software before
the invention of decentralized version
control systems.

Repository Collections
That said, Git typically focuses on a sin-
gle project, and its support for subpro-
jects is rudimentary at best. Because of

this, active developers tend to
create or clone dozens of

Git repositories in the
course of time, and
their authoritative
copies often reside
on different serv-
ers. Keeping
your local cop-
ies up to date
then be-
comes a
pain as

the number of repositories grows, and all
hell breaks loose if you happen to
change machines and have to rediscover
and reclone everything all at once. After
buying a new laptop, or moving to a
new development desktop, it would be
really useful to have a copy of all your
projects waiting for you.

Additionally, in many cases, comput-
ers will be assigned to groups that re-
quire different repositories. For example,
you might not want to keep a Git reposi-
tory with large images on your laptop for
space reasons, and you would probably
want to avoid storing private content on
your computer at work. A configuration
file, stored somewhere on the Internet,
could store the locations of the reposito-
ries you use. These values tend to
change quickly as you add new projects
and delete or move others. This scenario
sounds like a task for a version control
system: How about using Git to maintain
your metadata (meta) repository?

Invented Format
The configuration data will be stored in
a plain text file in YAML format, because

Features
Perl: Managing Git

September 2010	 Issue 118	 linux-magazine.com | Linuxpromagazine.com	50

 Manage Git repositories with a meta directory

Projects
Everywhere

How do you make sure the new laptop you just bought is populated with copies of all the

Git repositories you use? Easy. By using a meta repository to maintain a list of projects and

Perl scripts to automate discovery and cloning. By Mike Schilli

Mike Schilli works as a software engineer with
Yahoo! in Sunnyvale, California. He can be con-
tacted at mschilli@perlmeister.com. Mike’s
homepage can be found at
http://​perlmeister.​com.

 Mike Schilli

it’s easily read by both humans and ma-
chines. This specific new dialect shall be
called GMF (Git Meta Format), and my
configuration files will have a .gmf file
extension.

Figure 1 gives an example. The first
entry points to a privately hosted reposi-
tory that resides on a fictitious server,
private.server.com, which supports SSH
access.

The second entry points to the official
Git repository for the Perl 5 kernel,
which stores the entire commit history
ever since Larry Wall released the first
version of Perl back in 1987. Both reposi-
tory locators in the configuration can be
used directly by the git clone com-
mand, which creates a local directory

with a copy of the remote
repository.

Of course, the GMF file
could simply list all the
active repositories, but
busy developers would
find the effort of continu-
ally adding new projects
and removing defunct
ones strenuous in the long
term.

For example, if you
launch a dozen projects
on Github.com, or on a
server with SSH access,
you could save yourself
the trouble of adding
these locations if the meta

repository understood how to interpret
these collections without human interac-
tion. The meta repository would thus
need to understand instructions such as
“Grab all the repositories in this direc-
tory on this server over SSH” or “All re-
positories by this user
stored on GitHub.”

In One Fell
Swoop
The YAML blocks as-
signed to the two lower
dashes in Figure 1 each
represent two hashes (see
Figure 2 for the Perl for-
mat to which the YAML
configuration is con-

verted) that designate collections of re-
positories with specific properties in the
meta format.

The first hash has a value of Github in
its type field, and the user entry, with its
value of mschilli, indicates that all re-
positories belonging to user mschilli on
Github.com should be copied to the local
machine or updated.

Instead of dozens of separate entries,
there are just two lines, and if the user
were to create some new repositories on
Github.com, they would automatically
become part of the meta repository with-
out requiring modification of the config-
uration file.

If the user deleted a project on GitHub,
the updater would not explicitly delete
the local project. But if the user removed
the local copy, cloning would no longer
occur.

The YAML entry next to the last dash
in Figure 1 (or the final data structure in
Figure 2) references a collection of Git

Figure 1: The metadata to locate all of the user’s active Git

repositories are stored in the gitmeta.gmf file in the Git meta

repository somewhere on the Internet.

Figure 2: The data parsed from the gitmeta.gmf YAML file

gets transformed into a Perl data structure.

01 �#!/usr/local/bin/perl ‑w

02 �use strict;

03 �use GitMeta::GMF;

04 �use Sysadm::Install qw(:all);

05 �use File::Basename;

06 �use Getopt::Std;

07 �use Log::Log4perl qw(:easy);

08

�09 �getopts("vn", \my %opts);

10

�11 �if ($opts{v}) {

12 � Log::Log4perl‑>easy_init(

13 � $DEBUG);

14 �}

15

�16 �my ($gmf_repo, $gmf_path,

17 � $local_dir)

18 � = @ARGV;

19

�20 �die "usage: $0 gmf‑repo ",

21 � "gmf‑path local‑dir"

22 � unless defined $local_dir;

23

�24 �main();

25

�26 �#############################

27 �sub main {

28 �#############################

29 � my $gm = GitMeta::GMF‑>new(

30 � repo => $gmf_repo,

31 � gmf_path => $gmf_path

32 �);

33

�34 � my @urls = $gm‑>expand();

35

�36 � if ($opts{n}) {

37 � for my $url (@urls) {

38 � print "$url\n";

39 � }

40 � return 1;

41 � }

42

�43 � cd $local_dir;

44

�45 � for my $url (@urls) {

46 � my $repo_dir =

47 � basename $url;

48 � $repo_dir =~ s/\.git$//g;

49 � if (‑d $repo_dir) {

50 � cd $repo_dir;

51 � tap "git", "fetch",

52 � "origin";

53 � cdback;

54 � } else {

55 � tap "git", "clone", $url;

56 � }

57 � }

58 � return 1;

59 �}

 Listing 1: gitmeta-update

Features
Perl: Managing Git

linux-magazine.com | Linuxpromagazine.com	 Issue 118	 September 2010 51

repositories that reside in a directory on
the specified server with SSH access.
Again, the updater automatically picks
up new entries without needing user in-
teraction: To do this, the processing
script lists the subdirectories and then
clones the individual repositories it finds
in this way.

Mirror, Mirror
The gitmeta‑update script in Listing 1
handles the original cloning and later
updating procedures of local repositories
based on the data stored in the meta re-
pository. The meta repository will typi-

cally reside on a server with SSH access
to restrict the use of this potentially con-
fidential meta information to the autho-
rized user.

The script expects three command-line
parameters: the location of the meta re-
pository, the path to the GMF file within
it, and the local directory in which the
mirrored repositories will be stored. The
following command line

gitmeta‑update ‑v U

 user@secret.server.com:git/gitmeta U

 gitmeta.gmf U

 /path/to/local/repo/directory

contacts the server at secret.server.com,
logs in via SSH as user, changes to the
remote git/gitmeta directory below the
home directory belonging to user and
mirrors the Git repository it finds there
to a temporary directory on the local
disk. Then it loads the current version of
the gitmeta.gmf file, runs it through the
YAML parser, and processes the array
entries one after another.

Incidentally, the ‑v option in the previ-
ous command line sends verbose output
from the commands being processed to
stderr, with some help from the Log4perl
API.

01 �#############################

02 �package GitMeta;

03 �#############################

04

�05 �#############################

06 �sub new {

07 �#############################

08 � my ($class, %options) = @_;

09

�10 � my $self = {%options};

11 � bless $self, $class;

12 �}

13

�14 �#############################

15 �sub expand {

16 �#############################

17 � die "You need to ",

18 � "implement 'expand'";

19 �}

20

�21 �#############################

22 �sub param_check {

23 �#############################

24 � my ($self, @params) = @_;

25

�26 � for my $param (@param) {

27 � if (

28 � !exists $self‑>{$param})

29 � {

30 � die "Parameter $param ",

31 � " missing";

32 � }

33 � }

34 �}

35

�36 �1;

 Listing 2: GitMeta.pm

01 �#############################

02 �package GitMeta::GMF;

03 �#############################

04 �use strict;

05 �use warnings;

06 �use base qw(GitMeta);

07 �use File::Temp qw(tempdir);

08 �use Log::Log4perl qw(:easy);

09 �use YAML qw(Load);

10 �use Sysadm::Install qw(:all);

11 �use File::Basename;

12

�13 �#############################

14 �sub expand {

15 �#############################

16 � my ($self) = @_;

17

�18 � $self‑>param_check("repo",

19 � "gmf_path");

20

�21 � my $yml =

22 � $self‑>_fetch(

23 � $self‑>{repo},

24 � $self‑>{gmf_path});

25

�26 � my @locs = ();

27

�28 � for my $entry (@$yml) {

29 � my $type = ref($entry);

30

�31 � if ($type eq "") {

32

�33 � # plain git url

34 � push @locs, $entry;

35 � } else {

36 � my $class =

37 � "GitMeta::"

38 � . ucfirst(

39 � $entry‑>{type});

40 � eval "require $class;"

41 � or LOGDIE

42 � "Class $class missing";

43 � my $expander =

44 � $class‑>new(%$entry);

45 � push @locs,

46 � $expander‑>expand();

47 � }

48 � }

49

�50 � return @locs;

51 �}

52

�53 �#############################

54 �sub _fetch {

55 �#############################

56 � my ($self, $git_repo,

57 � $gmf_path)

58 � = @_;

59

�60 � my ($tempdir) =

61 � tempdir(CLEANUP => 1);

62

�63 � cd $tempdir;

64 � tap "git", "clone",

65 � $git_repo;

66 � my $data =

67 � slurp(basename($git_repo)

68 � . "/$gmf_path");

69 � cdback;

70 � my $yml = Load($data);

71 � return $yml;

72 �}

73

�74 �1;

 Listing 3: GMF.pm

Features
Perl: Managing Git

September 2010	 Issue 118	 linux-magazine.com | Linuxpromagazine.com	52

The Perl code wraps the retrieval and
processing of the YAML file in the
GitMeta::GMF class, but more of that
later. Lines 29 through 32 in Listing 1
call the new() constructor and pass in
the repository locator, $gmf_repo, along
with the path $gmf_path to the GMF file.
The call to the expand() method in line
34 resolves direct and indirect references
in the YAML file and returns a list of re-
pository locators that
point to the repositories
that need to be mirrored.

If the ‑n option is set,
the script performs a dry
run, and line 36 branches
off to a for loop that only
outputs the identified lo-
cators for test purposes
and then terminates
without actually mirror-
ing anything. In produc-
tion use, line 43 would
use the Sysadm::Install
module’s cd command to
change to the local mirror directory and
start cranking.

The for loop in lines 45-56 iterates
over all the found repository locators, re-
moves any .git extensions from the
names, and checks whether the corre-
sponding directory already exists (i.e.,
whether the repository has already been
mirrored). If so, it uses the command
git fetch to retrieve the changes that
happened in the remote location. It does
not merge them with the local git
branch, like a call to git pull would, be-
cause this could cause conflicts that the

user would painstakingly have to re-
solve. The gitmeta‑update command
aims to create a fast mirror while the In-
ternet connection is up. Once you have
retrieved the changes, you can always
use Git to merge them offline.

Fresh Clones
If no local directory for the repository ex-
ists yet, git clone in line 55 of Listing 1

creates one and then fetches the data
from the remote repository to create a
full clone.

The whole magic of the script is con-
tained in the GitMeta::​GMF class and its
expand() method, which is called in line
34 and doesn’t just fetch a GMF file but
recursively interprets its entries.

Listing 3 implements the GitMeta::​
GMF class, which inherits from the Git‑
Meta.pm base class in Listing 2. Its ex‑
pand() method expects two parameters:
the repository locator, repo, and the rela-
tive path to the remote GMF file, gmf_

path. The almost virtual base class in
Listing 2 provides the standard construc-
tor, new(), which is inherited by derived
classes. This saves typing and avoids
code duplication.

Lazy Subclasses
Additionally, the GitMeta.pm base class
defines the param_check() method called
by the subclasses to check whether their

constructors have been
handed the parameters
they expect. The method
terminates the program if
any of them are missing.
All subclasses refer to their
base class GitMeta by a use
base qw(GitMeta) state-
ment, as in line 6 of Listing
3, for example.

The instance of the ex‑
pand() method defined in
the base class (line 15, List-
ing 2) simply contains an
instruction that terminates

the program and is never executed if the
subclass defines its own expand()
method. The die instruction serves as a
reminder to subclass programmers to
implement this virtual base class method
in the subclass.

The _fetch() method defined in lines
54-72 (Listing 3) clones the specified Git-
meta repository into a temporary direc-
tory and slurps the YAML data provided
by the GMF file into a Perl structure,
which it returns as a result. The under-
score in the method name indicates that
this is an internal, private method that

01 �#############################

02 �package GitMeta::Github;

03 �#############################

04 �use strict;

05 �use warnings;

06 �use base qw(GitMeta);

07 �use LWP::UserAgent;

08 �use XML::Simple;

09

�10 �#############################

11 �sub expand {

12 �#############################

13 � my ($self) = @_;

14

�15 � $self‑>param_check("user");

16

�17 � my $user = $self‑>{user};

18 � my @repos = ();

19

�20 � my $ua =

21 � LWP::UserAgent‑>new();

22 � my $resp = $ua‑>get(

23 � "http://github.com" .

24 � "/api/v1/xml/$user"

25 �);

26

�27 � if ($resp‑>is_error) {

28 � die "API fetch failed: ",

29 � $resp‑>message();

30 � }

31

�32 � my $xml = XMLin(

33 � $resp‑>decoded_content());

34

�35 � my $by_repo =

36 � $xml‑>{repositories}

37 � ‑>{repository};

38

�39 � for

40 � my $repo (keys %$by_repo)

41 � {

42 � push @repos,

43 � "git\@github.com" .

44 � ":$user/$repo.git";

45 � }

46

�47 � return @repos;

48 �}

49

�50 �1;

 Listing 4: Github.pm

“You might not want to keep
a Git repository on your lap-
top for space reasons, and

you probably want to avoid
storing private content on
your computer at work.”

Features
Perl: Managing Git

linux-magazine.com | Linuxpromagazine.com	 Issue 118	 September 2010 53

does not belong to the API exported by
the class.

Polymorphic expansion
The exported expand() method first calls
_fetch() and then iterates in the for
loop starting in line 28 over all the YAML
array elements found in the GMF file. If
these elements are normal repository lo-
cators without a type entry, line 34 ap-

pends them to the @locs array without
any modification. However, if the current
YAML element contains a structure with
an entry in its type field, GMF.pm dele-
gates processing to a subclass of the cor-
responding type.

Supported values for type are github
and sshdir, which pass on processing of
the entry to the subclasses GitMeta::
Github and GitMeta::SshDir, respec-
tively. To allow this to happen, the eval
command in line 40 finds and loads the
required class to the active program; line
44 calls the class’s constructor new()
with the remaining parameters found in
the YAML entry.

Following polymorphic tradition, all
subclasses have an expand() method
that returns lists of repository locators.
Values returned, regardless of which in-
stance of expand() found them, are sent
to the end of the @locs array and con-
tribute to the total list of repositories in
the main script.

All My github Projects
If the script comes across a github entry
in the type field when interpreting a
GMF file, it activates GitMeta::Github
(Listing 4). This class also inherits from
the GitMeta base class and simply over-
writes its expand() method by fetching
the names of all repositories residing on

GitHub for the defined user. To
do so, it uses GitHub’s simple
XML API, which is freely avail-
able under the /api/v1/xml/
username path on Github.com
and doesn’t even require you
to register or submit a token.
Calling decoded_content() on
the response coming back
from the web server ensures

that project descriptions encoded in
UTF8 will still return valid XML.

The XML returned by the web query is
then grabbed by the XMLin() function of
the CPAN XML::Simple module, which
converts it into a deeply nested hash
data structure. Line 35 dives into the
hash using the {repositories}‑> {repos‑
itory} key and receives a hash whose
keys represent the repository names.

Lines 43 and 44 create a typical
GitHub-style repository locator from the
name. Local users will have read and
write access, assuming they identify
themselves correctly with a valid SSH
key on Github.com.

no Prying eyes
Listing 5 contains another specialized
class. The Gitmeta::SshDir package de-
fined there, which also inherits from
GitMeta, is responsible for repositories
that reside as subdirectories in a direc-
tory on a server with SSH-protected ac-
cess. This is perfect for private reposito-
ries, because neither the content nor the
names are published anywhere.

To parse a list of the directories avail-
able on the server and to pass it to the
updater later, line 21 (Listing 5) uses the
SSH protocol to run an ls command on
the server, thus obtaining the subdirecto-
ries of the given path. The output is sep-
arated by newlines, because
the Unix shell sends it this
way.

The while loop in lines 27-32
creates a repository locator for
the Git-via-SSH protocol from
each line and appends it to the
resulting @repos array, which
the method then passes back
to the caller as a long list.

Meta repositories can also reference
other meta repositories, as in Figure 3.
The type field in the entry shown here
has a value of GMF; the processing code
thus hands over responsibility to the
GitMeta::GMF class, which in turn
fetches the remote repository and ob-
tains and processes its GMF file.

The script resolves entries recursively
and creates a long list of repositories that
need updating. With this information,
programmers then can define groups of
repositories and assign a tailored collec-
tion of repositories to each system by
cleverly combining different meta reposi-
tories, with no need to reference reposi-
tories multiple times in multiple configu-
rations. The configuration shown in Fig-
ure 3 precisely matches

gitmeta‑update U

 user@devhost.com:git/gitmeta U

 privdev.gmf ...

apart from the fact that the command
line is followed by the name of the direc-
tory that is supposed to receive the local
clones. The GMF files in the meta reposi-
tory can also be stored in subdirectories
to improve the structure. I could imagine
creating a meta repository with two GMF
files, priv/free.gmf and priv/commerce.
gmf, to separate free software from com-
mercial software. To reference either one
instead of privdev.gmf, you would sim-
ply adapt the gmf_path in the GMF con-
figuration or the second gitmeta‑update
parameter on the command line.

keys Replace Passwords
To avoid repeatedly typing your pass-
word for SSH access, create private/ pub-
lic key pairs and install the public parts
on all SSH servers involved. Otherwise,
when the servers request a password,
you won’t see the prompt because the
tap() commands eat them, which leaves
you wondering what’s going on. GitHub
doesn’t support passwords for Git ac-

Figure 3: You can easily reference other Git meta reposi-

tories from a Git meta repository to create a hierarchical

structure.

Figure 4: To create new GMF files, create a new Git meta

repository on a server with SSH access, edit the GMF

file, and run a commit.

Be
st

Pr
ice

Gua
ra

nt
ee

!

Web Hosting
Email/Fax/SMS
Sales Invoicing
Networking

Accounting Software
Business Planning

Business Academy
Online Data Storage

Calendar
Contacts
Payment

Online Shop

Run A Business, Not An Office

Online. Easy. Secure. Reliable
All you need to run your home business or small office:

“The confi guration data are stored in a
plain text fi le in YAML format …”

Features
Perl: Managing Git

September 2010 ISSue 118 lInux-magazIne.com | lInuxpromagazIne.com 54

cess, anyway, and requires users to de-
posit their public keys on the website.

Installation
To run the gitmeta‑update script on a
newly installed machine, install the Perl
and the CPAN modules it and its sup-
porting classes use. The four classes I
have mentioned must be stored in the
following directory tree on your filesys-
tem below a path the script can find:

GitMeta.pm

GitMeta/GMF.pm

GitMeta/Github.pm

GitMeta/Sshdir.pm

To make new GMF files, create a new Git
repository on a server with SSH access,
edit the GMF file, and run a commit (Fig-
ure 4). After creating the meta repository
on the server, access it via a locator, like
user@some.host.com: repodir/ gitmeta.

The cloning starts when you run git‑
meta‑update with this locator and a local
target directory. If you don’t have a new
laptop to experiment on, this gives you a
perfect excuse to buy one. ■■■

Be
st

Pr
ice

Gua
ra

nt
ee

!

Web Hosting
Email/Fax/SMS
Sales Invoicing
Networking

Accounting Software
Business Planning

Business Academy
Online Data Storage

Calendar
Contacts
Payment

Online Shop

Run A Business, Not An Office

Online. Easy. Secure. Reliable
All you need to run your home business or small office:

01 #############################

02 package GitMeta::SshDir;

03 #############################

04 use strict;

05 use warnings;

06 use base qw(GitMeta);

07 use Sysadm::Install qw(:all);

08 use Log::Log4perl qw(:easy);

09

 10 #############################

11 sub expand {

12 #############################

13 my ($self) = @_;

14

 15 $self‑>param_check("host",

16 "dir");

17

 18 INFO "Retrieving repos ",

19 "from $self‑>{host}";

20

 21 my ($stdout) = tap "ssh",

22 $self‑>{host},

23 "ls", $self‑>{dir};

24

 25 my @repos = ();

26

 27 while ($stdout =~ /(.*)\n/g)

28 {

29 push @repos,

30 "$self‑>{host}:" .

31 "$self‑>{dir}/$1";

32 }

33

 34 return @repos;

35 }

36

 37 1;

 lIStIng 5: SshDir.pm

[1] Listings for this article:
http:// www. linuxpromagazine. com/
 Resources/ Article-Code

 InFO

Features
Perl: Managing Git

