
Sun’s Zettabyte File System (ZFS)

[1] was officially introduced to

(Open)Solaris [2] in June 2006,

replacing the legacy UFS (Unix File Sys-

tem). ZFS is a 128-bit filesystem with a

number of interesting features, such as

improved safeguards against defective

disks and the ability to manage large

numbers of files. Because currently there

are no 128-bit data types, ZFS uses the

first 64 bits and pads the rest of the

structure, ignoring the unused bits in

normal operations. The 128-bit design

will make it easier to migrate to 128-bit

types some time in the future.

The Logical Volume Manager (LVM)

lets ZFS pool physical media (drives or

partitions). Native RAID functionality al-

lows users with more than two hard

disks to set up a RAID pool. (Compared

with RAID 5, RAID Z in ZFS has faster

write access and is safer if your hard-

ware fails.)

ZFS’s list of capabilities includes an

automatic snapshot feature to save file-

system states. ZFS only stores the vector

to the previous snapshot. This design

lets the filesystem create “clones.” In

contrast to a snapshot, a clone supports

read and write access. ZFS also makes it

easy to add new hard disks or replace

defective disks on the fly. Online com-

pression, which you might remember

from NTFS, is another useful extra.

ZFS and Linux
Sun has released ZFS under the free, but

non-GPL-compatible CDDL license. Li-

cense compatibility problems currently

prevent the possibility of ZFS integration

with the Linux kernel, but no genuine

replacement is in sight: right now, ZFS

has a good head start on its competitors

– except for Oracle’s Btrfs [3], which has

similar features.

Luckily, ZFS is also available as a

FUSE (Filesystem in Userspace [4]) mod-

ule, which makes it possible to use ZFS

on Linux. The current version 0.5 of ZFS

FUSE [5] is stable, and it performed well

License issues prevent the integration of ZFS with the Linux kernel, but

Linux users can try the highly praised filesystem in userspace.

BY CHRISTIAN MEYER

The ZFS on Linux with FUSE

ZED HOUSE

To set up ZFS on Ubuntu, just add the

following entry to your repository file /

etc/apt/sources.list:

deb http://ppa.launchpad.net/U

brcha/ubuntu release_name U

main multiverse U

restricted universe

First, replace release_name with gutsy,

hardy, intrepid, or jaunty as needed to

match your release. Then type

apt-get update &&

apt-get install zfs-fuse

to install the software.

Once you complete this installation, you

will be working with the zfs and zpool

commands at the command line.

Installing ZFS

SUBSCRIBE TO LINUX
MAGAZINE PREVIEW,
OUR FREE MONTHLY
EMAIL NEWSLETTER!

WWW.LINUX-MAGAZINE.COM/NEWSLETTER

WANT TO KNOW
WHAT‘S UP NEXT?

B
ertra

n
d
 B

en
o
it, Foto

lia
ZFS on LinuxKnow-How

46 ISSUE 103 JUNE 2009

in our lab. Unlike conventional filesys-

tems that operate in kernel space, FUSE

operates in userspace, which means you

can expect some performance hits in cer-

tain circumstances. If performance is an

issue, you might consider moving to So-

laris or some BSD variant, in which ZFS

is already part of the kernel thanks to

the less restrictive BSD license.

Zpools
As I mentioned earlier, ZFS manages in-

dividual disks or whole disk arrays as

pools. The zpool tool is used to create a

pool. When creating a pool, it does not

matter whether you are working with

complete disks, multiple partitions, or, in

the simplest case, files. Here, I focus pri-

marily on files, but it is not difficult to

apply the concept to hard disks.

For test purposes, Listing 1 creates

eight virtual disks for ZFS. Note that ZFS

needs at least 64MB per file. The first

step is to run zpool to create the pool

(Listing 1, line 2).

ZFS does not let you reduce the size

later, in contrast to XFS. The pool now

has a size of 256MB, and you can add

new disks to increase the pool size (List-

ing 1, line 3); also, you can replace indi-

vidual parts of the pool: The command

in line 4 of Listing 1 replaces virtual disk

$ for i in $(seq 4 6); do dd if=/dev/zero of=/tmp/rpool$i bs=1024 count=128000;

done

$ zpool replace rpool /tmp/rpool1 /tmp/rpool4

$ zpool replace rpool /tmp/rpool2 /tmp/rpool5

$ zpool replace rpool /tmp/rpool3 /tmp/rpool6

Listing 3: Replacing the Disks

$ for i in $(seq 3); do dd if=/dev/zero of=/tmp/rpool$i bs=1024 count=65536; done

$ zpool create rpool raidz /tmp/rpool1 /tmp/rpool2 /tmp/rpool3

Listing 2: RAID-Z

01 $ for i in $(seq 8); do dd if=/dev/zero of=/tmp/$i bs=1024 count=65536; done

02 $ zpool create testpool /tmp/1 /tmp/2 /tmp/3 /tmp/4

03 $ zpool add testpool /tmp/5

04 $ zpool replace testpool /tmp/1 /tmp/6

Listing 1: Virtual Disks

Mirroring of two disks is the equivalent

of RAID Level 1. The system writes data

to both disks, providing full redundancy.

The failure of one disk does not entail

data loss. An optional hot spare disk can

step in to replace the defective disk in

case of a failure.

Mirroring

SUBSCRIBE TO LINUX
MAGAZINE PREVIEW,
OUR FREE MONTHLY
EMAIL NEWSLETTER!

WWW.LINUX-MAGAZINE.COM/NEWSLETTER

WANT TO KNOW
WHAT‘S UP NEXT?

Know-HowZFS on Linux

1 with virtual disk 6. In practical condi-

tions, the user will not notice this re-

placement. However, this variant is inef-

fective if one of the media has failed: if

this failure happens before you complete

the replacement, you will lose data.

The zfs list command gives you a use-

ful overview, including the pool name,

the disk space used, and the mount

point. The zpool iostat -v command gives

you details of read and write operations.

Adding Fail-Safes
Disk mirroring (aka RAID 1) is a simple

approach to adding a fail-safe system

(see the box titled “Mirroring”). Another

RAID type that protects your data

against hard disk failure, RAID 5, re-

quires at least three disks, which is more

expenditure for hardware, but with to-

day’s hard disk prices, buying three

500GB disks isn’t going to cost a fortune.

The effective storage capacity is calcu-

lated as follows: (number of disks – 1) x

(size of the smallest disk). Three 500GB

disks give you a total capacity of 1TB.

RAID 5 (single parity) does not lose

data if one disk in the array fails. Addi-

tionally, you can reconstruct the data

from the defective disk on a swap, but if

another disk fails before you have fin-

ished reconstruction, you lose all the

data on the array. In other words, you

have to be quick about providing a re-

placement for the defective disk.

RAID 6 improves redundancy and data

protection with the use of double parity:

A single disk failure will not faze the sys-

tem; losing a second disk puts the array

in an unsafe state. RAID 6 needs at least

four disks and is thus fairly expensive

because you lose two disks for parity

data storage.

Just like the software-based RAID on

Linux, ZFS RAID-Z and RAID-Z2 work

similarly to RAID 5 and RAID 6, respec-

tively. However, ZFS handles all write

operations in a way that transfers the

data and checksums atomically to en-

sure consistent data in case of a power

failure. One big advantage is that you do

not need an expensive hardware RAID

controller. Single- or dual-core CPUs cost

a fraction of what a controller costs and

are fast enough to handle the RAID con-

troller’s tasks.

Using RAID
Listing 2 demonstrates a RAID-Z array

with three (virtual) disks – RAID-Z2 is

similar. (The keyword for RAID-Z2 is

raidz2 instead of raidz.) The commands

in Listing 2 create a pool with RAID

functionality. Note that ZFS will not let

you extend the capacity: You can’t just

add new disks to the RAID pool. How-

ever, there is a workaround. As shown in

Listing 3, you can replace the existing

disks with three larger disks.

Alternatively, you can increase the

array capacity by adding mirror, or RAID-

Z, pools to the existing pool, rpool (List-

ing 4). This technique makes sense when

the new disks are the same size as the

existing disks. As long as you have more

than two disks, RAID-Z is preferable to

mirroring for failure safety reasons.

Preventing Data Loss
Modern hard disks have self-test func-

tions that let you check current hardware

status by running a special tool. If a disk

is in a critical state, ZFS lets you remove

it from the pool to check the hardware:

zpool offline rpool /tmp/rpool3

If you find out the hardware has an ir-

reparable defect, you have no alternative

but to replace it with the use of the zpool

replace command, as shown in Listing 3.

Whereas offline simply disables the disk

in the array, the replace command swaps

the existing medium.

ZFS then proceeds to synchronize the

pool, which can take a couple of min-

utes. The zpool status command keeps

you up to date with the current status.

If you are wondering why Apple is so

interested in ZFS, you might consider an

interesting feature in Mac OS X: The

“Time Machine” stores filesystem states,

which lets users restore older states.

Time Machine is actually based on ZFS.

In OpenSolaris, the developers have

integrated this feature with Nautilus [6].

On Linux, you currently have no alterna-

tive but to use the command line. To cre-

ate a snapshot, type zfs snapshot rpool@

created. The @ sign and an arbitrary

string following it are important. The zfs

list command outputs the existing pools

and snapshots (Listing 5).

If you change a pool – that is, copy or

add files – the USED and REFER columns

will have changed from the original

time. If you accidentally delete some

data, zfs rollback rpool@created is all it

takes to restore the pool to its original

state.

Conclusions
Compared with the current crop of popu-

lar Linux filesystems, ZFS has some very

interesting features, such as the integra-

tion of the Volume Manager and RAID

and the ability to create snapshots. Other

promising traits include online compres-

sion, or the ability to export or import

pools. The many benefits of ZFS make it

quite clear how big a lead this filesystem

has over its competitors right now. Al-

though Oracle’s Btrfs promises similar

abilities, it will take some time until it is

ready for production use. n

Christian Meyer has worked with

Linux since the mid-1990s and was a

member of the Gnome Deutschland

e.V. board between 2004 and 2006. In

his leisure time, Christian enjoys play-

ing badminton or researching new

technologies for Linux and Solaris.T
H

E
 A

U
T

H
O

R

[1] ZFS: http:// opensolaris. org/ os/

 community/ zfs/

[2] OpenSolaris:

http:// www. opensolaris. com

[3] Btrfs: http:// btrfs. wiki. kernel. org/

 index. php/ Main_Page

[4] FUSE: http:// fuse. sourceforge. net/

[5] ZFS FUSE: https:// developer. berlios.

 de/ projects/ zfs-fuse/

[6] Snapshot integration in Nautilus:

http:// blogs. sun. com/ erwann/ entry/

 zfs_on_the_desktop_zfs

INFO

$ zfs list

NAME USED AVAIL REFER

MOUNTPOINT

rpool 409K 266M 32,2K /

rpool

rpool@created 0 - 32,2K -

Listing 5: zlist Output

$ zpool add rpool mirror /tmp/rpool4 /tmp/rpool5

$ zpool add rpool raidz /tmp/rpool4 /tmp/rpool5 /tmp/rpool6

Listing 4: Adding Pools

ZFS on LinuxKnow-How

48 ISSUE 103 JUNE 2009

