
Most Linux system administra-
tors are familiar with those
three little numbers that appear

in shell commands like procinfo, uptime,
top, and remote host ruptime. Uptime,
for example, emits:

9:40am up 9 days, U
load average: 0.02, 0.01, 0.00

The load average metrics are always in-
cluded within the output of commands
like uptime. While the load average is
well known to Linux system administra-
tors, its meaning is often poorly under-
stood. The man page for uptime states
that these values represent

a one line display of ... U
the system load averages for U
the past 1, 5, and 15 minutes.

which explains why there are three num-
bers, but it does not explain what the
word load means or how to use these
figures to forecast and troubleshoot sys-
tem performance. This article takes a
close look at the load average metrics
and how to use them.

Controlled Experiments
I’ll start with a small experiment to dem-
onstrate how the load average values re-
spond to changes in system load. Experi-
mental load aver-
ages were sam-
pled over a one-
hour period (3600
seconds) on an
otherwise quies-
cent single-CPU
Linux box. These
tests consisted of
two phases. Two
CPU-intensive
jobs were initiated
as background
processes and al-
lowed to execute
for 2100 seconds.
At that point, these two processes were
stopped simultaneously, but load aver-
age measurements were continued for
another 1500 seconds after the jobs
stopped.

Listing 1 is a Perl script that was used
to sample the load average every 5 sec-
onds using the uptime command

A C program called burncpu.c was de-
signed to waste CPU cycles. Output from
top shows the two instances of burncpu
ranked as the highest CPU consumers
during the measurement period when
getload was running (Table 1).

Figure 1 shows that the 1-minute load
average reaches a value of 2.0 after 300
seconds into the test; the 5-minute load
average reaches 2.0 at around 1200 sec-
onds; the 15-minute load average would
reach 2.0 at approximately 4500 sec-
onds; but the processes were killed at
2100 seconds.

Readers with a background in electri-
cal engineering will immediately spot
the striking resemblance between the
data in Figure 1 and the voltage curves

produced by charging and discharging
an RC circuit. Notice that the maximum
load during the test is equivalent to the
number of CPU-intensive processes run-
ning at the time of the measurements.

What is the real meaning of those

little “load average” values in the

output of shell commands like

procinfo and uptime, and what

can you do with these numbers?

BY NEIL J. GUNTHER

Understanding load averages and stretch factors

STRETCH!

seb
a
stia

n
 ka

u
litz

ki, Foto
lia

Figure 1: Load average data (LAD) collected on a controlled Linux

platform during a one-hour period. LAD 1, LAD 5, and LAD 15 signify

the 1-, 5-, and 15-minute metrics.

0.00

0.50

1.00

1.50

2.00

2.50

0 500 1000 1500 2000 2500 3000 3500 4000

Elapsed Time (s)

Lo
ad

 A
ve

ra
ge

LAD_1

LAD_1

LAD_5

LAD_15

LAD_15

LAD_5

Load AverageSYSADMIN

62 ISSUE 83 OCTOBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

The “fins” in the top curve are a result of
various daemons waking up temporarily
and then going back to sleep.

My next objective was to explain why
the load average data from these experi-
ments exhibits the characteristics seen in
Figure 1. For that, I needed to explore
the Linux kernel code that calculates the
load average. I chose to use the Linux
2.6.20.1 source code [1], complete with
cross-referencing hyperlinks for easier
navigation and enhanced readability.

Kernel Code
Looking at the source code for the CPU
scheduler [2], we find the C function
function shown in Listing 2. This is the
primary routine that calculates the load
average metrics. Essentially, the routine

checks to see whether the sample period
has expired, resets the sampling counter,
and calls the subroutine CALC_LOAD to
calculate each of the 1-minute, 5-minute,
and 15-minute metrics. The sampling in-
terval used for LOAD_FREQ is 5*HZ.
How long is that interval?

Every Linux platform has a clock im-
plemented in hardware. This hardware
clock has a constant ticking rate by
which the system is synchronized. To
make this ticking rate known, the clock
sends an interrupt to the kernel on every
clock tick. The actual interval between
ticks differs. Most Linux systems have
the CPU tick interval set to 10ms of wall-
clock time.

The specific definition of the tick rate
is contained in a constant labeled HZ

that is maintained in a system-specific
header file called param.h. For the on-
line Linux source code we are using
here, you can see the value is 100 for an
Intel platform in lxr.linux.no/source/in-
clude/asm-i386/ param.h, and for a
SPARC-based system in lxr.linux.no/
source/include/asm-sparc/param.h.

calc_load is called at a frequency de-
fined by the tick rate – once every 5 sec-
onds (not 5 times per second, as some
people think). This sampling period of 5
seconds is independent of the 1-, 5-, and
15-minute reporting periods.

Load Average Revealed
The calc_load function in Listing 2 refers
to the C macro CALC_LOAD, which does
the real work of calculating the load av-
erage (Listing 3). CALC_LOAD is defined
in http:// lxr. linux. no/ source/ include/
linux/ sched. h.

Mathematically, CALC_LOAD is equiv-
alent to taking the current value of the
variable load and multiplying it by a fac-
tor called exp. This value of load is then
added to a term comprising the number
of active processes n multiplied by an-
other variable called FIXED_1-exp. The
last line of the macro decimalizes the
value of load.

We also know that the macro variable
exp is equivalent to e-σ/ r (see the box on
"Fixed-Point Arithmetic"), and FIXED_
1-exp is equivalent to 1 – e-σ/ r. Writing
the CALC_LOAD macro in more conven-
tional mathematical notation produces:

L t L t e n t er r() () () ()/ /= − + −− −1 1σ σ

where L(t) is the current value of the
load variable, L(t – 1) is its value from

01 #! /usr/bin/perl -w

02 $sample_interval = 5; #
seconds

03

04 # Fire up background
cpu-intensive tasks ...

05 system("./burncpu &");

06 system("./burncpu &");

07

08 # Perpetually monitor the load
average via uptime

09 # and emit it as tab-separated
fields for possible

10 # use in a spreadsheet
program.

11 while (1) {

12

13 @uptime = split (/ /,
'uptime');

14 foreach $up (@uptime) {

15 # collect the timestamp

16 if ($up =~ m/(\d\d:\d\d:\d\
d)/) {

17 print "$1\t";

18 }

19 # collect the three load
metrics

20 if ($up =~ m/(\d{1,}\.\d\d)/)
{

21 print "$1\t";

22 }

23 }

24 print "\n";

25 sleep ($sample_interval); }

Listing 1: Sampling the load average

(1)

SYSADMINLoad Average

63ISSUE 83 OCTOBER 2007W W W. L I N U X- M A G A Z I N E . C O M

the previous sample, and n(t) is the
number of currently active processes.

A Linux process can be in one of
about half a dozen states (depending on
how you count), of which running, run-
nable (R in the ps command), and sleep-
ing (S in ps command) are the three pri-
mary states. Each load-average metric is
based on the total number of processes
that are:
• runnable and waiting in the scheduler

run queue
• currently running or executing on a

processor.
In queueing theory terminology, the total
active processes is called a queue. It lit-
erally means not just those processes
that are in the waiting line (the so-called
run queue), but also those that are cur-
rently being serviced (i.e., running). So,
CALC_LOAD is the fixed-point arithmetic
version of equation (1). (See the box ti-
tled “Fixed-Point Arithmetic.”)

Smoothing
It turns out that there is nothing particu-
larly novel about the way the load aver-
age is calculated. In fact, a common
technique for processing highly variable
raw data for subsequent analysis is to
apply some kind of smoothing function
to that data. The general relationship be-
tween the raw input data and the
smoothed output data is given by:

Y t Y t X t Y t() () () ()= − + − −[]1 1α{ { {

smooth const. raw

The smoothing function in equation (2)
is an exponential filter or exponentially
smoothed moving average of the type
used in financial forecasting [3] and sig-
nal processing. The parameter α in equa-
tion (2) is commonly called the smooth-
ing constant, while (1 – α) is called the
damping factor. Both these factors can
be directly related to the corresponding
factors in equation (1). The magnitude
of the smoothing coefficient (0 <= α
<= 1) determines how much the cur-

rent forecast must be corrected for error
in the previous iteration of the forecast.

Notice that the exponential damping
factor for r1 in Table 4 agrees with the
value calculated in the "Fixed-Point
Arithmetic" sidebar to four decimal
places. The 1-minute load average met-
ric has the least damping, or about 8%
correction, because it is the most respon-
sive to instantaneous changes in the
length of the run queue. Conversely, the
15-minute load average has the most
damping, or only 1% correction, be-
cause it is the least responsive metric.

Stretch Factors
Inevitably, the question arises: What is a
good load average? Since we now know

that the load average is an exponentially
damped moving average of activity in
the process run queue, we could convert
the question to, “How long should my
queue be?”

Long queues correspond to long re-
sponse times, so it’s really the response
time metric that should get your atten-
tion. One consequence is that a long
queue can cause “poor response times,”
but that depends on what poor means.
In most performance management tools,
there is a disconnect between the mea-
sured run-queue length and the user-per-
ceived response times. Another problem
is that queue length is an absolute mea-
sure, whereas what is really needed is a
relative performance measure. Even the

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND
20048 neil 25 0 256 256 212 R 30.6 0.0 0:32 0 burncpu
20046 neil 25 0 256 256 212 R 29.3 0.0 0:32 0 burncpu
15709 mir 24 0 9656 9656 4168 R 25.6 1.8 45:32 0 kscience.kss
1248 root 15 0 66092 10M 1024 S 9.5 2.1 368:25 0 X
20057 neil 16 0 1068 1068 808 R 2.3 0.2 0:01 0 top
1567 mir 15 0 39228 38M 14260 S 1.3 7.6 40:10 0 mozilla-bin

Table 1: Top Output

01 1136 unsigned long avenrun[3];

02 1137

03 1138 EXPORT_SYMBOL(avenrun);

04 1139

05 1140 /*

06 1141 * calc_load -given tick count, update the avenrun load
estimates.

07 1142 * This is called while holding a write_lock on xtime_lock.

08 1143 */

09 1144 static inline void calc_load(unsigned long ticks)

10 1145 {

11 1146 unsigned long active_tasks; /* fixed-point */

12 1147 static int count = LOAD_FREQ;

13 1148

14 1149 count -= ticks;

15 1150 if (unlikely(count < 0)) {

16 1151 active_tasks = count_active_tasks();

17 1152 do {

18 1153 CALC_LOAD(avenrun[0], EXP_1, active_tasks);

19 1154 CALC_LOAD(avenrun[1], EXP_5, active_tasks);

20 1155 CALC_LOAD(avenrun[2], EXP_15, active_tasks);

21 1156 count += LOAD_FREQ;

22 1157 } while (count < 0);

23 1158 }

24 1159 }

Listing 2: calc_load

(2)

Load AverageSYSADMIN

64 ISSUE 83 OCTOBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

words poor and good are relative terms.
Such a relative metric is called the
stretch factor, and it measures the mean
queue length relative to the mean num-
ber of requests already in service. It is
expressed in multiples of service units. A
stretch factor of 1 means no waiting time
is involved.

What makes the stretch factor really
useful is that it can easily be compared
with service level targets. Service targets
are usually expressed in certain types of
business units (e.g., quotes per hour is a
common business unit of work for an in-
surance industry). The expected service
level is called the service level objective
or SLO, and it is expressed as multiples
of the relevant service unit. An SLO
might be documented as, “The average
user response time is not to exceed 15
service units between the peak operating
hours of 10am and 2pm.”

This is the same as saying the SLO
shall not exceed a stretch factor of 15.

Using the symbols defined in Table 5,
the stretch factor f can be calculated as
the ratio:

f Q
mp

=

From the experiments described earlier,
we know that m = 1 because it was a
single-process box, Q = 2 for the 1-min-
ute load average, and p = 1 because the
workload was CPU-bound. Substituting
these values into equation (3) gives a
stretch factor of f = 2. This result tells
us that the expected time for any process
to complete is two service periods. No-
tice that we don’t have to know what the

actual service period is. The stretch fac-
tor and the load average happen to be
identical in this case, because the pro-
cesses are running on a single processor
and they are CPU-intensive. I'll describe
a couple scenarios for using this stretch
factor in real situations.

Anti-Spam Farm
All major email hosting services run
spam analyzers. A typical configuration
might consist of a set of specialized serv-
ers, each raking over email text using a
filtering tool like SpamAssassin [4]. One
such well-known, and therefore heavily
trafficked, web portal has a battery of
some 100 servers, each comprising two
dual-cores, all performing 24/ 7 email
scanning. Typical daily spam-filtering
statistics are shown in Table 6.

A load balancer was used to distribute
work into the server farm. The effective-
ness of the load balancer was monitored
using 1-minute load averages. The sam-
ple of these load averages from 50 of the
servers (as shown in Figure 2) reveals an
imbalance of work in the farm.

98 /*

99 * These are the constant used to fake the fixed-point load-average

100 * counting. Some notes:

101 * - 11 bit fractions expand to 22 bits by the multiplies: this
gives

102 * a load-average precision of 10 bits integer + 11 bits fractional

103 * - if you want to count load-averages more often, you need more

104 * precision, or rounding will get you. With 2-second counting
freq,

105 * the EXP_n values would be 1981, 2034 and 2043 if still using
only

106 * 11 bit fractions.

107 */

108 extern unsigned long avenrun[]; /* Load averages */

109

 110 #define FSHIFT 11 /* nr of bits of precision */

111 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */

112 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */

113 #define EXP_1 1884 /* 1/exp(5sec/1min) as
fixed-point */

114 #define EXP_5 2014 /* 1/exp(5sec/5min) */

115 #define EXP_15 2037 /* 1/exp(5sec/15min) */

116

 117 #define CALC_LOAD(load,exp,n) \

118 load *= exp; \

119 load += n*(FIXED_1-exp); \

120 load >>= FSHIFT;

Listing 3: CALC_LOAD()

<- 10 Bits -> <--11 Bits -->
0000000001 0 0 0 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 0 0 0 0 0 0
Bit Position: 10 9 8 7 6 5 4 3 2 1 0

Table 2: Bit positions in 10.11 fixed-point format

Base Sec. 1.exp(-5/ r) Rounded Binary
r1 60 1884.25 188410 111010111002
r5 300 2014.15 201410 111110111102
r15 900 2036.65 203710 111111101012

Table 3: Magic Numbers for 5-second Sampling

Timebase Parameter Damping Factor Smoothing Constant
r1 0.9200 0.0800 (+/ - 8%)
r5 0.9835 0.0165 (+/ - 2%)
r15 0.9945 0.0055 (+/ - 1%)

Table 4: Damping Factors for CALC_LOAD()
m number of processors or cores
Q measured load average
p measured processor utilization

Table 5: Stretch Factor
Definitions

(3)

Load AverageSYSADMIN

66 ISSUE 83 OCTOBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

A system administrator might ask:
• Why is there a load imbalance?
• Are most servers overdriven as a con-

sequence of the load imbalance?
• Is a load average of Q = 97.36 emails

desirable?
• What should be the actual server per-

formance?
• How many additional servers will be

needed in the next fiscal year to main-
tain current scanning performance at
higher loads?

Let’s substitute the load average into
equation (3) to calculate the stretch
factor:

f = =
97 36

4 0 99
24 59

,

• ,
.

From Table 6, the average time to scan
an email message (S) is 6 seconds.

So, a stretch factor of f = 25 service
periods implies that it takes about 25 x 6
= 150 seconds or 2.5 minutes from the
time an email message reaches the por-
tal until it lands in the intended user’s
email box.

An absolute
value of Q =
97.36 for the load
average tells us
very little. The rel-
ative stretch fac-
tor, however, tells
you how many
service periods
the spam filtering
is costing.

As for the
question about
whether a load
average of 97.36
is desirable, that
depends on the
agreed upon service targets. At least
now, such questions can be addressed
quantitatively instead of speculatively.

You can also use the data in Table 6 to
model the performance using a perfor-
mance-prediction tool like PDQ. (See the
box titled “PDQ in Python.”)

The spam server model in PyDQ (PDQ
in Python) is shown in Listing 4. Run-
ning this PDQ model produces a report

that contains the output shown in
Listing 5.

The stretch factor predicted by PDQ is
a little bigger than we calculated using
equation (3). Why is that? To learn why,
you must examine the section of the
PDQ report that presents server perfor-
mance information (Listing 6).

Given the rate at which work is arriv-
ing (2376 emails per hour), each CPU

The cryptic comment that precedes the
CALC_LOAD macro in Listing 3 alerts us
to the fact that fixed-point, rather than
floating-point, arithmetic is used to cal-
culate the load average. A fixed-point
representation means that only a fixed
number of digits, either decimal or bi-
nary, are used to express any number,
including those that have a fractional
part (mantissa) following the decimal
point. Suppose, for example, that 4 bits
of precision were allowed in the man-
tissa. You could precisely represent:

0.1234, -12.3401, 1.2000,
1234.0001

However, numbers like:

0.12346, -8.34051

could not be represented exactly and
would be rounded off. Too much round-
ing can cause insignificant errors to
compound into significant errors. One
way around this is to increase the num-
ber of bits used to express the mantissa,
assuming enough storage is available to
accommodate the greater precision.

Suppose 10 bits are allowed for the inte-
ger part and 11 bits for the factional part.
This is called an M.N = 10.11 format. The
rules for fixed-point addition are the
same as for integer addition; however,
an important difference occurs with

fixed-point multiplication. The product of
two M.N fixed-point numbers is:

M N M N M M N N. • . (),()= + +

To get back to M.N format, the lower or-
der bits are eliminated by shifting N bits.

CALC_LOAD uses serveral fixed-point
constants. The first is the number 1,
which is labeled FIXED_1. In Table 2, the
top row corresponds to FIXED_1 ex-
pressed in 10.11 format, whereas the
leading zeros and the decimal point have
been dropped in the second row. The
digits of the resulting binary
1000000000002 are indexed 0 through 11
on the last row of Table 2. This estab-
lishes that FIXED_1 is equivalent to 2 to
the11th power, or decimal 2048.

Using the C left-shift bitwise operator
(<<), 1000000000002 can be written as 1
<< 11, which is in agreement with line
111 of the macro code. Alternatively, we
can write FIXED_1 as a decimal integer:

FIXED _1 204810=

to simplify calculation of the remaining
constants: EXP_1, EXP_5, and EXP_15,
for the 1-, 5-, and 15-minute metrics.

Consider the 1-minute metric as an ex-
ample. If we denote the sample period as
σ and the reporting period as r :

EXP e r_ /1 ≡ −σ

σ = 5 seconds and for the 1-minute met-
ric and r = 60 seconds. Furthermore, the
decimal value of EXP_1 is:

e− =5 60 0 920044414643/ ,

To convert this to a 10.11 fixed-point frac-
tion, you only need to multiply it by the
fixed-point constant FIXED_1 or 1 to pro-
duce:

[• ,]2048 0 92004441463 188410=

and round it to the nearest 11-bit integer.
Each of the other magic numbers can be
calculated in the same way, and the re-
sults are summarized in Table 3.

The results in Table 3 agree with the ker-
nel defines:

#define EXP_1 1884

#define EXP_5 2014

#define EXP_15 2037

Fixed-Point Arithmetic

Figure 2: Measured load averages showing the unbalanced work dis-

tribution across a sample of 50 spam-farm servers.

Monitored Spam Farm Activity

0 20 40 60 80 100 120

1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

49

Se
rv

er

Load average

(4)

SYSADMINLoad Average

67ISSUE 83 OCTOBER 2007W W W. L I N U X- M A G A Z I N E . C O M

should be 99% busy. This utilization is
higher than seen in the actual spam farm
because of the load imbalance. PDQ is
assuming ideal load balance across all
servers, so more work is getting done.
The predicted load average (Queue
length metric in the PDQ report) is closer
to 100 emails; therefore, the predicted
stretch factor of 25.45 is a little larger
than the calculated value of 24.59.

Either stretch factor value was consid-
ered to be borderline acceptable under
peak load conditions. Since all the serv-
ers are close to saturated, one recourse is
to upgrade with faster CPUs or, more
likely, procure new 4-way servers to
handle the expected additional work.
PDQ helps to size the number of new
servers based on current and expected
stretch factors. Clearly, it is the stretch
factor ratio that provides a more mean-
ingful indicator for performance man-
agement than the absolute load average
by itself.

Number Cruncher
You can use a similar PyDQ model to see
what it means to have no waiting line
with all the CPUs busy. In this case, each

Linux process takes 10 hours to complete
because it is transforming oil-exploration
data for further analysis by geophysi-
cists. The corresponding PyDQ model is
shown in Listing 7.

The PDQ resource performance report
corresponding to Listing 7 is in Listing 8.
The waiting line is essentially zero
length and all four CPUs are busy,
though only 25% utilized. If you were to
look at the CPU statistics while the sys-
tem was running, you would observe
that each CPU was actually 100% busy.
To understand what PDQ is telling us,
look at the System Performance section
of the PDQ report (Listing 9).

The stretch factor is 1 (service period)
because there is no waiting line. It takes
10 hours for each job to finish, so the re-
sponse is about 10 hours.

Number of CPUs 4

Spam detected 33901

Ham accepted 23123

Emails processed 57024

Emails per hour 2376

Per CPU/ hour 594

CPU busy % 99

Secs per email 6

Load average 97.36

Table 6: Daily Spam Server
Statistics

01 #!/usr/bin/env python import pdq

02 # Measured performance parameters

03 cpusPerServer = 4

04 emailThruput = 2376 # emails per hour

05 scannerTime = 6.0 # seconds per email

06 pdq.Init("Spam Farm Model")

07 # Timebase is SECONDS ...

08 nstreams = pdq.CreateOpen("Email", float(emailThruput)/3600)

09 nnodes = pdq.CreateNode("spamCan", int(cpusPerServer), pdq.MSQ)

10 pdq.SetDemand("spamCan", "Email", scannerTime)

11 pdq.Solve(pdq.CANON)

12 pdq.Report()

Listing 4: PDQ Spam Farm Model

01 ****** SYSTEM Performance *******

02 Metric Value Unit

03 ------ ----- ----

04 Workload: "Email"

05 Number in system 100.7726 Trans

06 Mean throughput 0.6600 Trans/Sec

07 Response time 152.6858 Sec

08 Stretch factor 25.4476

Listing 5: PDQ System Performance Output

01 ****** RESOURCE Performance *******

02 Metric Resource Work Value Unit

03 ------ -------- ---- ----- ----

04 Throughput spamCan Email 0.0660 Trans/Sec

05 Utilization spamCan Email 99.0000 Percent

06 Queue length spamCan Email 100.7726 Trans

07 Waiting line spamCan Email 96.8126 Trans

08 Waiting time spamCan Email 146.6858 Sec

09 Residence time spamCan Email 152.6858 Sec

Listing 6: PDQ Resource Performance Report

Load AverageSYSADMIN

68 ISSUE 83 OCTOBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

PDQ (Pretty Damn Quick) is a modeling
tool for analyzing the performance char-
acteristics of computational resources,
for example, processors disks and a set
of processes that make requests for
those resources. A PDQ model is ana-
lyzed using algorithms based on queue-
ing theory. The current release facilitates
building and analyzing performance
models in C, Perl, Python, Java, and
PHP.

The Python PDQ functions and proce-
dures used in this section are:

• pdq.Init() initializes internal PDQ vari-
ables

• pdq.CreateOpen() creates a workload

• pdq.CreateNode() creates a server

• pdq.SetDemand() sets the workload
service time on the server resource

• pdq.Solve() calculates performance
metrics

• pdq.Report() generates a generic per-
formance report

PDQ is maintained by Peter Harding and
me. You’ll find more information about
the PDQ library online [5].

PDQ in Python

The reason this appears a little odd is
that PDQ makes predictions based on
steady-state behavior (i.e., how the sys-
tem looks in the long run). With a ser-
vice time of 10 hours, you really need to
observe the system for much longer than
that to see what it looks like in steady
state. Much longer here means on the
order of 100 hours or longer. You don’t
actually need to do that, but PDQ is tell-
ing us how things would look if you did.

Since the average service period is rel-
atively large, the request rate is corre-
spondingly small so that no waiting line
forms. This, means that the processor
utilization of 25% is also low – in the
long view. Looking at the system for just

a few minutes while it is crunching 10
hours worth of oil-exploration data cor-
responds to an instantaneous snapshot
of the system, not a steady-state view.

Both of the preceding stretch-factor ex-
amples involve CPU-bound workloads.
I/ O-bound workloads (either disk or net-
work) will tend to exhibit smaller load
averages than CPU-bound work if those
processes become suspended or sleep
waiting on data. In that state, they are
neither runnable nor running and there-
fore do not contribute to n(t) in equation
(1). Conversely, when the Linux I/ O
driver is performing work, it runs in ker-
nel mode on a CPU and does contribute
to n(t).

The load average value Q measures
the total number of requests; both
waiting and in service. It is not a very
meaningful quantity because it is an
absolute value. Combining it, however,
with the number of configured proces-
sors (m) and their average measured
utilization (p), the stretch factor f pro-
vides a better performance management
metric for symmetric multiprocessor
and multicore servers because it is a
relative performance indicator that can
be compared directly with established
SLOs.

Conclusion
The load average provides information
about the trend in the growth of the run
queue, which is why there are three met-
rics. Each metric captures trend informa-
tion from the run queue as it was 1, 5,
and 15 minutes ago. Compared with to-
day’s graphical data display capabilities,
this approach to data representation
looks antique. In fact, the load average is
one of the earliest forms of operating-
system instrumentation (circa 1965).

This article presented the stretch fac-
tor as a better way to make use of load
average data for managing the perfor-
mance of application service-level tar-
gets on multicore servers. ■

Neil Gunther, M.Sc., Ph.D. is an in-
ternationally recognized consultant
who founded Performance Dynam-
ics Company in 1994. Prior to that,
Dr. Gunther held research and man-
agement positions at San Jose State
University, JPL/ NASA, Xerox PARC,
and Pyramid/ Siemens Technology.
Performance Dynamics has also
embarked on joint research into
Quantum Information Technology.
Dr. Gunther is a member of the
AMS, APS, ACM, CMG, IEEE, and
INFORMS.

T
H

E
 A

U
T

H
O

R

Load AverageSYSADMIN

70 ISSUE 83 OCTOBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

[1] Linux 2.6.20.1 source code:
http:// lxr. linux. no/ source/

[2] Linux scheduler C code:
http:// lxr. linux. no/ source/ kernel/ timer. c

[3] Financial forecasting:
http:// bigcharts. marketwatch. com

[4] SpamAssassin:
http:// spamassassin. apache. org/

[5] PDQ library:
http:// www. perfdynamics. com/ Tools

INFO

01 #!/usr/bin/env python import pdq

02 processors = 4 # Same as spam farm example

03 arrivalRate = 0.099 # Jobs per hour (very low arrivals)

04 crunchTime = 10.0 # Hours (very long service time)

05

06 pdq.Init("ORCA LA Model")

07 s = pdq.CreateOpen("Crunch", arrivalRate)

08 n = pdq.CreateNode("HPCnode", int(processors), pdq.MSQ)

09 pdq.SetDemand("HPCnode", "Crunch", crunchTime)

10 pdq.SetWUnit("Jobs")

11 pdq.SetTUnit("Hour")

12 pdq.Solve(pdq.CANON)

13 pdq.Report()

Listing 7: PyDQ Model

01 ****** RESOURCE Performance *******

02 Metric Resource Work Value Unit

03 ------ -------- ---- ----- ----

04 Throughput HPCnode Crunch 0.0990 Jobs/Hour

05 Utilization HPCnode Crunch 24.7500 Percent

06 Queue length HPCnode Crunch 0.9965 Jobs

07 Waiting line HPCnode Crunch 0.0065 Jobs

08 Waiting time HPCnode Crunch 0.0656

Listing 8: Resource Performance Output

01 ****** SYSTEM Performance *******

02 Metric Value Unit

03 ------ ----- ----

04 Workload: "Crunch"

05 Number in system 0.9965 Jobs

06 Mean throughput 0.0990 Jobs/Hour

07 Response time 10.0656 Hour

08 Stretch factor 1.0066

Listing 9: System Performance Output

