
Most Linux system administra-
tors are familiar with those 
three little numbers that appear 

in shell commands like procinfo, uptime, 
top, and remote host ruptime. Uptime, 
for example, emits:

9:40am up 9 days, U
load average: 0.02, 0.01, 0.00

The load average metrics are always in-
cluded within the output of commands 
like uptime. While the load average is 
well known to Linux system administra-
tors, its meaning is often poorly under-
stood. The man page for uptime states 
that these values represent

a one line display of ... U
the system load averages for U
the past 1, 5, and 15 minutes.

which explains why there are three num-
bers, but it does not explain what the 
word load means or how to use these 
figures to forecast and troubleshoot sys-
tem performance. This article takes a 
close look at the load average metrics 
and how to use them.

Controlled Experiments
I’ll start with a small experiment to dem-
onstrate how the load average values re-
spond to changes in system load. Experi-
mental load aver-
ages were sam-
pled over a one-
hour period (3600 
seconds) on an 
otherwise quies-
cent single-CPU 
Linux box. These 
tests consisted of 
two phases. Two 
CPU-intensive 
jobs were initiated 
as background 
processes and al-
lowed to execute 
for 2100 seconds.
At that point, these two processes were 
stopped simultaneously, but load aver-
age measurements were continued for 
another 1500 seconds after the jobs 
stopped.

Listing 1 is a Perl script that was used 
to sample the load average every 5 sec-
onds using the uptime command

A C program called burncpu.c was de-
signed to waste CPU cycles. Output from 
top shows the two instances of burncpu 
ranked as the highest CPU consumers 
during the measurement period when 
getload was running (Table 1).

Figure 1 shows that the 1-minute load 
average reaches a value of 2.0 after 300 
seconds into the test; the 5-minute load 
average reaches 2.0 at around 1200 sec-
onds; the 15-minute load average would 
reach 2.0 at approximately 4500 sec-
onds; but the processes were killed at 
2100 seconds.

Readers with a background in electri-
cal engineering will immediately spot 
the striking resemblance between the 
data in Figure 1 and the voltage curves 

produced by charging and discharging 
an RC circuit. Notice that the maximum 
load during the test is equivalent to the 
number of CPU-intensive processes run-
ning at the time of the measurements. 

What is the real meaning of those 

little “load average” values in the 

output of shell commands like 

procinfo and uptime, and what 

can you do with these numbers? 
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Understanding load averages and stretch factors
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Figure 1: Load average data (LAD) collected on a controlled Linux 

platform during a one-hour period. LAD 1, LAD 5, and LAD 15 signify 

the 1-, 5-, and 15-minute metrics.
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The “fins” in the top curve are a result of 
various daemons waking up temporarily 
and then going back to sleep.

My next objective was to explain why 
the load average data from these experi-
ments exhibits the characteristics seen in 
Figure 1. For that, I needed to explore 
the Linux kernel code that calculates the 
load average. I chose to use the Linux 
2.6.20.1 source code [1], complete with 
cross-referencing hyperlinks for easier 
navigation and enhanced readability.

Kernel Code
Looking at the source code for the CPU 
scheduler [2], we find the C function 
function shown in Listing 2. This is the 
primary routine that calculates the load 
average metrics. Essentially, the routine 

checks to see whether the sample period 
has expired, resets the sampling counter, 
and calls the subroutine CALC_LOAD to 
calculate each of the 1-minute, 5-minute, 
and 15-minute metrics. The sampling in-
terval used for LOAD_FREQ is 5*HZ. 
How long is that interval?

Every Linux platform has a clock im-
plemented in hardware. This hardware 
clock has a constant ticking rate by 
which the system is synchronized. To 
make this ticking rate known, the clock  
sends an interrupt to the kernel on every 
clock tick. The actual interval between 
ticks differs. Most Linux systems have 
the CPU tick interval set to 10ms of wall-
clock time.

The specific definition of the tick rate 
is contained in a constant labeled HZ 

that is maintained in a system-specific 
header file called param.h. For the on-
line Linux source code we are using 
here, you can see the value is 100 for an 
Intel platform in lxr.linux.no/source/in-
clude/asm-i386/ param.h, and for a 
SPARC-based system in lxr.linux.no/
source/include/asm-sparc/param.h.

calc_load is called at a frequency de-
fined by the tick rate – once every 5 sec-
onds (not 5 times per second, as some 
people think). This sampling period of 5 
seconds is independent of the 1-, 5-, and 
15-minute reporting periods.

Load Average Revealed
The calc_load function in Listing 2 refers 
to the C macro CALC_LOAD, which does 
the real work of calculating the load av-
erage (Listing 3). CALC_LOAD is defined 
in http:// lxr. linux. no/ source/ include/ 
linux/ sched. h.

Mathematically, CALC_LOAD is equiv-
alent to taking the current value of the 
variable load and multiplying it by a fac-
tor called exp. This value of load is then 
added to a term comprising the number 
of active processes n multiplied by an-
other variable called FIXED_1-exp. The 
last line of the macro decimalizes the 
value of load.

We also know that the macro variable 
exp is equivalent to e-σ/ r (see the box on 
"Fixed-Point Arithmetic"), and FIXED_
1-exp is equivalent to  1 – e-σ/ r. Writing 
the CALC_LOAD macro in more conven-
tional mathematical notation produces:

L t L t e n t er r( ) ( ) ( ) ( )/ /= − + −− −1 1σ σ

where L(t) is the current value of the 
load variable, L(t – 1) is its value from 

01  #! /usr/bin/perl -w

02  $sample_interval = 5; # 
seconds

03  

04  # Fire up background 
cpu-intensive tasks ...

05  system("./burncpu &");

06  system("./burncpu &");

07  

08  # Perpetually monitor the load 
average via uptime

09  # and emit it as tab-separated 
fields for possible

10  # use in a spreadsheet 
program.

11  while (1) {

12  

13  @uptime = split (/ /, 
'uptime');

14  foreach $up (@uptime) {

15  # collect the timestamp

16  if ($up =~ m/(\d\d:\d\d:\d\
d)/) {

17  print "$1\t";

18  }

19  # collect the three load 
metrics

20  if ($up =~ m/(\d{1,}\.\d\d)/) 
{

21  print "$1\t";

22  }

23  }

24  print "\n";

25  sleep ($sample_interval); }

Listing 1: Sampling the load average

(1)
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the previous sample, and n(t) is the 
number of currently active processes.

A Linux process can be in one of 
about half a dozen states (depending on 
how you count), of which running, run-
nable (R in the ps command), and sleep-
ing (S in ps command) are the three pri-
mary states. Each load-average metric is 
based on the total number of processes 
that are:
• runnable and waiting in the scheduler 

run queue
• currently running or executing on a 

processor.
In queueing theory terminology, the total 
active processes is called a queue. It lit-
erally means not just those processes 
that are in the waiting line (the so-called 
run queue), but also those that are cur-
rently being serviced (i.e., running). So, 
CALC_LOAD is the fixed-point arithmetic 
version of equation (1). (See the box ti-
tled “Fixed-Point Arithmetic.”)

Smoothing
It turns out that there is nothing particu-
larly novel about the way the load aver-
age is calculated. In fact, a common 
technique for processing highly variable 
raw data for subsequent analysis is to 
apply some kind of smoothing function 
to that data. The general relationship be-
tween the raw input data and the 
smoothed output data is given by:

Y t Y t X t Y t( ) ( ) ( ) ( )= − + − −[ ]1 1α{ { {

smooth const. raw

The smoothing function in equation (2) 
is an exponential filter or exponentially 
smoothed moving average of the type 
used in financial forecasting [3] and sig-
nal processing. The parameter α in equa-
tion (2) is commonly called the smooth-
ing constant, while (1 – α) is called the 
damping factor. Both these factors can 
be directly related to the corresponding 
factors in equation (1). The magnitude 
of the smoothing coefficient (0 <= α 
<= 1) determines how much the cur-

rent forecast must be corrected for error 
in the previous iteration of the forecast.

Notice that the exponential damping 
factor for r1 in Table 4 agrees with the 
value calculated in the "Fixed-Point 
Arithmetic" sidebar to four decimal 
places. The 1-minute load average met-
ric has the least damping, or about 8% 
correction, because it is the most respon-
sive to instantaneous changes in the 
length of the run queue. Conversely, the 
15-minute load average has the most 
damping, or only 1% correction, be-
cause it is the least responsive metric.

Stretch Factors
Inevitably, the question arises: What is a 
good load average? Since we now know 

that the load average is an exponentially 
damped moving average of activity in 
the process run queue, we could convert 
the question to, “How long should my 
queue be?”

Long queues correspond to long re-
sponse times, so it’s really the response 
time metric that should get your atten-
tion. One consequence is that a long 
queue can cause “poor response times,” 
but that depends on what poor means. 
In most performance management tools, 
there is a disconnect between the mea-
sured run-queue length and the user-per-
ceived response times. Another problem 
is that queue length is an absolute mea-
sure, whereas what is really needed is a 
relative performance measure. Even the 

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND 
20048  neil  25  0  256  256 212 R 30.6 0.0 0:32 0 burncpu 
20046 neil 25 0 256 256 212 R 29.3 0.0 0:32 0 burncpu 
15709 mir 24 0 9656 9656 4168 R 25.6 1.8 45:32 0 kscience.kss 
1248 root 15 0 66092 10M 1024 S 9.5 2.1 368:25 0 X 
20057 neil 16 0 1068 1068 808 R 2.3 0.2 0:01 0 top 
1567 mir 15 0 39228 38M 14260 S 1.3 7.6 40:10 0 mozilla-bin 

Table 1: Top Output

01  1136 unsigned long avenrun[3];

02  1137

03  1138 EXPORT_SYMBOL(avenrun);

04  1139

05  1140 /*

06  1141 * calc_load -given tick count, update the avenrun load 
estimates.

07  1142 * This is called while holding a write_lock on xtime_lock.

08  1143 */

09  1144 static inline void calc_load(unsigned long ticks)

10  1145 {

11  1146 unsigned long active_tasks; /* fixed-point */

12  1147 static int count = LOAD_FREQ;

13  1148

14  1149 count -= ticks;

15  1150 if (unlikely(count < 0)) {

16  1151 active_tasks = count_active_tasks();

17  1152 do {

18  1153 CALC_LOAD(avenrun[0], EXP_1, active_tasks);

19  1154 CALC_LOAD(avenrun[1], EXP_5, active_tasks);

20  1155 CALC_LOAD(avenrun[2], EXP_15, active_tasks);

21  1156 count += LOAD_FREQ;

22  1157 } while (count < 0);

23  1158 }

24  1159 }

Listing 2: calc_load

(2)
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words poor and good are relative terms. 
Such a relative metric is called the 
stretch factor, and it measures the mean 
queue length relative to the mean num-
ber of requests already in service. It is 
expressed in multiples of service units. A 
stretch factor of 1 means no waiting time 
is involved.

What makes the stretch factor really 
useful is that it can easily be compared 
with service level targets. Service targets 
are usually expressed in certain types of 
business units (e.g., quotes per hour is a 
common business unit of work for an in-
surance industry). The expected service 
level is called the service level objective 
or SLO, and it is expressed as multiples 
of the relevant service unit. An SLO 
might be documented as, “The average 
user response time is not to exceed 15 
service units between the peak operating 
hours of 10am and 2pm.”

This is the same as saying the SLO 
shall not exceed a stretch factor of 15.

Using the symbols defined in Table 5, 
the stretch factor f can be calculated as 
the ratio:

f Q
mp

=

From the experiments described earlier, 
we know that m = 1 because it was a 
single-process box, Q = 2 for the 1-min-
ute load average, and p = 1 because the 
workload was CPU-bound. Substituting 
these values into equation (3) gives a 
stretch factor of f = 2. This result tells 
us that the expected time for any process 
to complete is two service periods. No-
tice that we don’t have to know what the 

actual service period is. The stretch fac-
tor and the load average happen to be 
identical in this case, because the pro-
cesses are running on a single processor 
and they are CPU-intensive. I'll describe 
a couple scenarios for using this stretch 
factor in real situations.

Anti-Spam Farm
All major email hosting services run 
spam analyzers. A typical configuration 
might consist of a set of specialized serv-
ers, each raking over email text using a 
filtering tool like SpamAssassin [4]. One 
such well-known, and therefore heavily 
trafficked, web portal has a battery of 
some 100 servers, each comprising two 
dual-cores, all performing 24/ 7 email 
scanning. Typical daily spam-filtering 
statistics are shown in Table 6.

A load balancer was used to distribute 
work into the server farm. The effective-
ness of the load balancer was monitored 
using 1-minute load averages. The sam-
ple of these load averages from 50 of the 
servers (as shown in Figure 2) reveals an 
imbalance of work in the farm.

98  /*

99  * These are the constant used to fake the fixed-point load-average

100  * counting. Some notes:

101  * - 11 bit fractions expand to 22 bits by the multiplies: this 
gives

102  *   a load-average precision of 10 bits integer + 11 bits fractional

103  * - if you want to count load-averages more often, you need more

104  *   precision, or rounding will get you. With 2-second counting 
freq,

105  *   the EXP_n values would be 1981, 2034 and 2043 if still using 
only

106  *   11 bit fractions.

107  */

108  extern unsigned long avenrun[];     /* Load averages */

109

 110  #define FSHIFT       11             /* nr of bits of precision */

111  #define FIXED_1      (1<<FSHIFT)      /* 1.0 as fixed-point */

112  #define LOAD_FREQ    (5*HZ)         /* 5 sec intervals */

113  #define EXP_1        1884           /* 1/exp(5sec/1min) as 
fixed-point */

114  #define EXP_5        2014           /* 1/exp(5sec/5min) */

115  #define EXP_15       2037           /* 1/exp(5sec/15min) */

116

 117  #define CALC_LOAD(load,exp,n) \

118          load *= exp; \

119          load += n*(FIXED_1-exp); \

120          load >>= FSHIFT;

Listing 3: CALC_LOAD()

<- 10 Bits ->     <--11 Bits -->     
0000000001 0 0 0 0 0 0 0 0 0 0 0
         1 0 0 0 0 0 0 0 0 0 0 0
Bit Position: 10 9 8 7 6 5 4 3 2 1 0

Table 2: Bit positions in 10.11 fixed-point format

Base Sec. 1.exp(-5/ r) Rounded Binary
r1 60 1884.25 188410 111010111002
r5 300 2014.15 201410 111110111102
r15 900 2036.65 203710 111111101012

Table 3: Magic Numbers for 5-second Sampling

Timebase Parameter Damping Factor Smoothing Constant
r1 0.9200 0.0800 (+/ - 8%)
r5 0.9835 0.0165 (+/ - 2%)
r15 0.9945 0.0055 (+/ - 1%)

Table 4: Damping Factors for CALC_LOAD()
m number of processors or cores
Q measured load average
p measured processor utilization

Table 5: Stretch Factor 
Definitions

(3)
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A system administrator might ask:
• Why is there a load imbalance?
• Are most servers overdriven as a con-

sequence of the load imbalance?
• Is a load average of Q = 97.36 emails 

desirable?
• What should be the actual server per-

formance?
• How many additional servers will be 

needed in the next fiscal year to main-
tain current scanning performance at 
higher loads?

Let’s substitute the load average into 
equation (3) to calculate the stretch 
factor:

f = =
97 36

4 0 99
24 59

,

• ,
.

From Table 6, the average time to scan 
an email message (S) is 6 seconds. 

So, a stretch factor of f = 25 service 
periods implies that it takes about 25 x 6 
= 150 seconds or 2.5 minutes from the 
time an email message reaches the por-
tal until it lands in the intended user’s 
email box.

An absolute 
value of Q = 
97.36 for the load 
average tells us 
very little. The rel-
ative stretch fac-
tor, however, tells 
you how many 
service periods 
the spam filtering 
is costing. 

As for the 
question about 
whether a load 
average of 97.36 
is desirable, that 
depends on the 
agreed upon service targets. At least 
now, such questions can be addressed 
quantitatively instead of speculatively.

You can also use the data in Table 6 to 
model the performance using a perfor-
mance-prediction tool like PDQ. (See the 
box titled “PDQ in Python.”) 

The spam server model in PyDQ (PDQ 
in Python) is shown in Listing 4. Run-
ning this PDQ model produces a report 

that contains the output shown in 
Listing 5.

The stretch factor predicted by PDQ is 
a little bigger than we calculated using 
equation (3). Why is that? To learn why, 
you must examine the section of the 
PDQ report that presents server perfor-
mance information (Listing 6).

Given the rate at which work is arriv-
ing (2376 emails per hour), each CPU 

The cryptic comment that precedes the 
CALC_LOAD macro in Listing 3 alerts us 
to the fact that fixed-point, rather than 
floating-point, arithmetic is used to cal-
culate the load average. A fixed-point 
representation means that only a fixed 
number of digits, either decimal or bi-
nary, are used to express any number, 
including those that have a fractional 
part (mantissa) following the decimal 
point. Suppose, for example, that 4 bits 
of precision were allowed in the man-
tissa. You could precisely represent:

0.1234, -12.3401, 1.2000, 
1234.0001

However, numbers like:

0.12346, -8.34051

could not be represented exactly and 
would be rounded off. Too much round-
ing can cause insignificant errors to 
compound into significant errors. One 
way around this is to increase the num-
ber of bits used to express the mantissa, 
assuming enough storage is available to 
accommodate the greater precision.

Suppose 10 bits are allowed for the inte-
ger part and 11 bits for the factional part. 
This is called an M.N = 10.11 format. The 
rules for fixed-point addition are the 
same as for integer addition; however, 
an important difference occurs with 

fixed-point multiplication. The product of 
two M.N fixed-point numbers is:

M N M N M M N N. • . ( ),( )= + +

To get back to M.N format, the lower or-
der bits are eliminated by shifting N bits.

CALC_LOAD uses serveral fixed-point 
constants. The first is the number 1, 
which is labeled FIXED_1. In Table 2, the 
top row corresponds to FIXED_1 ex-
pressed in 10.11 format, whereas the 
leading zeros and the decimal point have 
been dropped in the second row. The 
digits of the resulting binary 
1000000000002 are indexed 0 through 11 
on the last row of Table 2. This estab-
lishes that FIXED_1 is equivalent to 2 to 
the11th power, or decimal 2048.

Using the C left-shift bitwise operator 
(<<), 1000000000002 can be written as 1 
<< 11, which is in agreement with line 
111 of the macro code. Alternatively, we 
can write FIXED_1 as a decimal integer:

FIXED _1 204810=

to simplify calculation of the remaining 
constants: EXP_1, EXP_5, and EXP_15, 
for the 1-, 5-, and 15-minute metrics. 

Consider the 1-minute metric as an ex-
ample. If we denote the sample period as 
σ and the reporting period as r :

EXP e r_ /1 ≡ −σ

σ = 5 seconds and for the 1-minute met-
ric and r = 60 seconds. Furthermore, the 
decimal value of EXP_1 is:

e− =5 60 0 920044414643/ ,

To convert this to a 10.11 fixed-point frac-
tion, you only need to multiply it by the 
fixed-point constant FIXED_1 or 1 to pro-
duce:

[ • , ]2048 0 92004441463 188410=

and round it to the nearest 11-bit integer. 
Each of the other magic numbers can be 
calculated in the same way, and the re-
sults are summarized in Table 3.

The results in Table 3 agree with the ker-
nel defines:

#define EXP_1 1884

#define EXP_5 2014

#define EXP_15 2037

Fixed-Point Arithmetic

Figure 2: Measured load averages showing the unbalanced work dis-

tribution across a sample of 50 spam-farm servers.
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should be 99% busy. This utilization is 
higher than seen in the actual spam farm 
because of the load imbalance. PDQ is 
assuming ideal load balance across all 
servers, so more work is getting done. 
The predicted load average (Queue 
length metric in the PDQ report) is closer 
to 100 emails; therefore, the predicted 
stretch factor of 25.45 is a little larger 
than the calculated value of 24.59.

Either stretch factor value was consid-
ered to be borderline acceptable under 
peak load conditions. Since all the serv-
ers are close to saturated, one recourse is 
to upgrade with faster CPUs or, more 
likely, procure new 4-way servers to 
handle the expected additional work. 
PDQ helps to size the number of new 
servers based on current and expected 
stretch factors. Clearly, it is the stretch 
factor ratio that provides a more mean-
ingful indicator for performance man-
agement than the absolute load average 
by itself.

Number Cruncher
You can use a similar PyDQ model to see 
what it means to have no waiting line 
with all the CPUs busy. In this case, each 

Linux process takes 10 hours to complete 
because it is transforming oil-exploration 
data for further analysis by geophysi-
cists. The corresponding PyDQ model is 
shown in Listing 7.

The PDQ resource performance report 
corresponding to Listing 7 is in Listing 8. 
The waiting line is essentially zero 
length and all four CPUs are busy, 
though only 25% utilized. If you were to 
look at the CPU statistics while the sys-
tem was running, you would observe 
that each CPU was actually 100% busy. 
To understand what PDQ is telling us, 
look at the System Performance section 
of the PDQ report (Listing 9).

The stretch factor is 1 (service period) 
because there is no waiting line. It takes 
10 hours for each job to finish, so the re-
sponse is about 10 hours.

Number of CPUs 4 

Spam detected 33901 

Ham accepted 23123 

Emails processed 57024 

Emails per hour 2376 

Per CPU/ hour 594 

CPU busy % 99 

Secs per email 6 

Load average 97.36

Table 6: Daily Spam Server 
Statistics

01  #!/usr/bin/env python import pdq

02  # Measured performance parameters

03  cpusPerServer = 4

04  emailThruput = 2376 # emails per hour

05  scannerTime = 6.0 # seconds per email

06  pdq.Init("Spam Farm Model")

07  # Timebase is SECONDS ...

08  nstreams = pdq.CreateOpen("Email", float(emailThruput)/3600)

09  nnodes = pdq.CreateNode("spamCan", int(cpusPerServer), pdq.MSQ)

10  pdq.SetDemand("spamCan", "Email", scannerTime)

11  pdq.Solve(pdq.CANON)

12  pdq.Report()

Listing 4: PDQ Spam Farm Model

01  ****** SYSTEM Performance *******

02  Metric Value Unit

03  ------ ----- ----

04  Workload:               "Email"

05  Number in system        100.7726 Trans

06  Mean throughput         0.6600 Trans/Sec

07  Response time           152.6858 Sec

08  Stretch factor          25.4476

Listing 5: PDQ System Performance Output

01  ****** RESOURCE Performance *******

02  Metric Resource Work Value Unit

03  ------ -------- ---- ----- ----

04  Throughput spamCan Email        0.0660 Trans/Sec

05  Utilization spamCan Email       99.0000 Percent

06  Queue length spamCan Email      100.7726 Trans

07  Waiting line spamCan Email      96.8126 Trans

08  Waiting time spamCan Email      146.6858 Sec

09  Residence time spamCan Email    152.6858 Sec

Listing 6: PDQ Resource Performance Report

Load AverageSYSADMIN
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PDQ (Pretty Damn Quick) is a modeling 
tool for analyzing the performance char-
acteristics of computational resources, 
for example, processors disks and a set 
of processes that make requests for 
those resources. A PDQ model is ana-
lyzed using algorithms based on queue-
ing theory. The current release facilitates 
building and analyzing performance 
models in C, Perl, Python, Java, and 
PHP.

The Python PDQ functions and proce-
dures used in this section are:

• pdq.Init() initializes internal PDQ vari-
ables

• pdq.CreateOpen() creates a workload

• pdq.CreateNode() creates a server

• pdq.SetDemand() sets the workload 
service time on the server resource

• pdq.Solve() calculates performance 
metrics

• pdq.Report() generates a generic per-
formance report

PDQ is maintained by Peter Harding and 
me. You’ll find more information about 
the PDQ library online [5].

PDQ in Python



The reason this appears a little odd is 
that PDQ makes predictions based on 
steady-state behavior (i.e., how the sys-
tem looks in the long run). With a ser-
vice time of 10 hours, you really need to 
observe the system for much longer than 
that to see what it looks like in steady 
state. Much longer here means on the 
order of 100 hours or longer. You don’t 
actually need to do that, but PDQ is tell-
ing us how things would look if you did.

Since the average service period is rel-
atively large, the request rate is corre-
spondingly small so that no waiting line 
forms. This, means that the processor 
utilization of 25% is also low – in the 
long view. Looking at the system for just 

a few minutes while it is crunching 10 
hours worth of oil-exploration data cor-
responds to an instantaneous snapshot 
of the system, not a steady-state view.

Both of the preceding stretch-factor ex-
amples involve CPU-bound workloads. 
I/ O-bound workloads (either disk or net-
work) will tend to exhibit smaller load 
averages than CPU-bound work if those 
processes become suspended or sleep 
waiting on data. In that state, they are 
neither runnable nor running and there-
fore do not contribute to n(t) in equation 
(1). Conversely, when the Linux I/ O 
driver is performing work, it runs in ker-
nel mode on a CPU and does contribute 
to n(t).

The load average value Q measures 
the total number of requests; both 
waiting and in service. It is not a very 
meaningful quantity because it is an 
absolute value. Combining it, however, 
with the number of configured proces-
sors (m) and their average measured 
utilization (p), the stretch factor f pro-
vides a better performance management 
metric for symmetric multiprocessor 
and multicore servers because it is a 
relative performance indicator that can 
be compared directly with established 
SLOs.

Conclusion
The load average provides information 
about the trend in the growth of the run 
queue, which is why there are three met-
rics. Each metric captures trend informa-
tion from the run queue as it was 1, 5, 
and 15 minutes ago. Compared with to-
day’s graphical data display capabilities, 
this approach to data representation 
looks antique. In fact, the load average is 
one of the earliest forms of operating-
system instrumentation (circa 1965). 

This article presented the stretch fac-
tor as a better way to make use of load 
average data for managing the perfor-
mance of application service-level tar-
gets on multicore servers.  ■
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[1]  Linux 2.6.20.1 source code:  
http:// lxr. linux. no/ source/

[2]  Linux scheduler C code:  
http:// lxr. linux. no/ source/ kernel/ timer. c

[3]  Financial forecasting:  
http:// bigcharts. marketwatch. com

[4]  SpamAssassin:  
http:// spamassassin. apache. org/

[5]  PDQ library:  
http:// www. perfdynamics. com/ Tools

INFO

01  #!/usr/bin/env python import pdq

02  processors = 4 # Same as spam farm example

03  arrivalRate = 0.099 # Jobs per hour (very low arrivals)

04  crunchTime = 10.0 # Hours (very long service time)

05  

06  pdq.Init("ORCA LA Model")

07  s = pdq.CreateOpen("Crunch", arrivalRate)

08  n = pdq.CreateNode("HPCnode", int(processors), pdq.MSQ)

09  pdq.SetDemand("HPCnode", "Crunch", crunchTime)

10  pdq.SetWUnit("Jobs")

11  pdq.SetTUnit("Hour")

12  pdq.Solve(pdq.CANON)

13  pdq.Report()

Listing 7: PyDQ Model

01  ****** RESOURCE Performance *******

02  Metric Resource Work Value Unit

03  ------ -------- ---- ----- ----

04  Throughput HPCnode Crunch       0.0990 Jobs/Hour

05  Utilization HPCnode Crunch      24.7500 Percent

06  Queue length HPCnode Crunch     0.9965 Jobs

07  Waiting line HPCnode Crunch     0.0065 Jobs

08  Waiting time HPCnode Crunch     0.0656

Listing 8: Resource Performance Output

01  ****** SYSTEM Performance *******

02  Metric Value Unit

03  ------ ----- ----

04  Workload:               "Crunch"

05  Number in system        0.9965 Jobs

06  Mean throughput         0.0990 Jobs/Hour

07  Response time           10.0656 Hour

08  Stretch factor          1.0066

Listing 9: System Performance Output




