
21

Of course, you can use CPU cycles
to search for extraterrestrial life
forms, as the SETI@Home proj-

ect demonstrates, but that’s not all.
When one computer is incapable of ex-
ploiting the full potential of a modern
CPU, you can let multiple computers do
so. Multiple virtual servers on a small
number of physical hosts put the hard-
ware resources to better use while at the
same time consolidating the system
landscape.

This month’s cover story looks at vir-
tualization in Linux. We’ll show you the
popular Xen virtual machine monitor,
and we’ll look at the alternative VServer
virtualization tool. We’ll also bring you a
glimpse of virtualization in the real
world with VMware’s ESX Server.

En Vogue
Virtualization is one of today’s buzz
words, although the idea is not new.
Since the introduction of the Java pro-
gramming language, most people have
constantly used at least one virtual ma-
chine. And maybe some readers will re-
member the UCSD Pascal p system, one
of the first virtual machines for Pascal.

Virtualization at operating system
level goes back a long way. The first vir-
tual machine was IBM’s VM/ CMS from
the late sixties. And this technology is
still with us today; dubbed z/ VM, it sup-

ports efficient use of Linux on IBM
zSeries servers.

Virtual Machines
A virtual machine typically emulates an
execution environment: that is, it emu-
lates the interface to this environment.
(In contrast to emulation, simulation
would reflect all internal states of the
environment at the same time.)

In the Java programming language,
we talk about the Java Virtual Machine
(JVM), an emulation based on strict
specifications [16]. The internal states
are not really of interest to the user. The
JVM works as a virtual processor within
a virtual execution environment.

This kind of emulation is also possible
for a complete computing system. The
task is not typically handled by the hard-
ware but requires a special supporting
software component-- a kind of rudi-
mentary operating system known as a
Virtual Machine Monitor (VMM) or hy-
pervisor (Figure 1). However, the hard-
ware, especially the CPU, has to fulfill a
few requirements [1].

VmWare [2] and VirtualPC or Virtu-
alServer [3] support this kind of virtual-
ization on the x86 architecture. However,
Intel and AMD processors do not provide
everything you need to support efficient
virtualization [1]. To do so, each ma-
chine instruction that allows access to

Linux in the dawn of the virtual era

MANY IN ONE
Virtualization can save you time, money, and effort, but you’ll need to find the right tool for the task.

BY WILHELM MEIER, TORSTEN KOCKLER

Xen 3 . 26

VServer . 32

VMware ESX Server 38

COVER STORY

COVER STORYVirtual Machines Intro

21

host system resources would need to
trigger a software interrupt, unless it is
running in one of the processor’s privi-
leged modes [17]. Intel’s Vanderpool [4]
and AMDs Pacifica [5] CPUs will be the
first chips to support this ability in an ef-
ficient way. Right now, products such as
VmWare or VirtualPC use workarounds
that can considerably affect perfor-
mance.

Xen [6] is another hypervisor tech-
nique that requires modifications to the
guest operating system without Vander-
pool or Pacifica processor technology.
Xen uses a technique known as para-vir-
tualization, in contrast to the full virtual-
ization used by VmWare or VirtualPC.
You’ll learn more about Xen and para-
virtualization later in this issue.

Full and para-virtualization provide a
complete execution environment just
like a physical computer system. This is
why you need to install an independent
operating system kernel on the virtual
machine, although it does not need to be
the same kernel the host system uses.

The host and guest system kernels can
be identical. At first glance, it doesn’t
seem to make much sense to detour via
the virtual machine. After all, the virtual
machine monitor simply provides the
same execution environment the host
system offers. But if you look more
closely, you’ll see why virtualization
makes sense for many environments. For
example, you might want to consolidate
multiple physical computer systems on a
single powerful system to save costs and

administrative over-
head.

On closer inspec-
tion, it is obviously
very important to
know what you are
trying to achieve by
introducing virtual-
ization. The trade
offs are security,
performance, cost,
and complexity. You
will find an over-
view of various vir-
tualization ap-
proaches at [7].

Defining
Goals
If the aim is to pro-
vide homogeneous,

but separate, virtual execution environ-
ments, full virtualization is a useful ap-
proach. Even if you have different, phys-
ical host systems, the virtual machines
can still be set up identically. This
approach adds the ability to allocate
guest systems arbitrarily, and sometimes
dynamically, within a pool of physical
systems.

At the same time, over-commitment,
that is, multiple planning of physical re-
sources in the virtual machines, can help
you save. Of course, this assumes bal-
anced load profiles. Peak loads on multi-
ple virtual machines can’t occur at the
same time.

The host system and its guests, and
the guest systems
among themselves,
are completely un-
linked from a struc-
tural point of view,
and this is impor-
tant for security. All
of the systems use
the same CPU, but it
makes no difference
if the host system is
a separate virtual
machine monitor –
as is the case with
VmWare ESX – on
which Linux, Free-
BSD, or Windows
run as guest sys-
tems, or if the vir-
tual machine re-
quires a complete

host system, such as Microsoft VirtualPC
(Figure 2).

The latter scenario is fairly complex,
adding another software component for
guest system management on top of the
virtualization component.

The CPU performance for non-privi-
leged machine instructions on a virtual
machine is theoretically identical to that
of the native environment, although the
current crop of Intel and AMD CPUs re-
quire performance-hitting workarounds.
However, the performance of the virtual
periphery can be vastly different. In each
case, you will need to check whether vir-
tualization will really help you achieve
your goals.

Virtual Servers
If requirements do not mandate full vir-
tualization, and if the guest and host op-
erating system kernel can be identical,
virtual server environments or operating
system partitions may be an option. If an
operating system kernel has the ability
to allocate processes, and divide the file
system and all other resources to an ex-
tent where processes on different parti-
tions do not influence each other and re-
sources can’t reach other partitions, par-
titions can be operated more or less like
separate physical servers. Applying this
principle to a Linux/ Unix system, this
seems to open up vectors that were pre-
viously imperfect or very hard to achieve
(Figure 3).

The advantages of partitioning are ob-
vious: less latency and overhead in com-

Figure 1: Virtual machine with a Virtual Machine Monitor. VmWare

ESX is a practical example of this.

Hardware

Virtual Machine Monitor (VMM)

Gentoo

Linux
Kernel

FreeBSD
Kernel

Debian FreeBSD

Linux
Kernel

Figure 2: Virtual machine with complete host operating system:

this is how Micrososft’s VirtualPC works, for example.

Hardware

Linux Kernel

VMM

Linux
Kernel

FreeBSD
Kernel

Debian FreeBSD Gentoo

Virtual Machines IntroCOVER STORY

22 ISSUE 70 SEPTEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

parison to virtual machines,
where multiple kernels run in
parallel or in a hierarchy, and
where data are multiply buff-
ered and copied.

Just like with virtual ma-
chines, the load profile for
the services and applications
running on the partitions has
to be taken into account. The
performance hits in compari-
son to a native environment
may be negligible, but you
can’t afford to ignore capacity
planning, and there are limits
to over-commitment.

If threads are not only en-
capsulated in traditional pro-
cesses, but additionally as-
signed to a single partition,
root processes on partition A
can neither see nor influence
processes on partition B. The
same thing applies to the file-
system. If partition A is exclu-
sively assigned a subtree
below /A, and partition B a
subtree below /B, the privi-
leges for the omnipotent Unix
root user are nicely chan-
neled for one partition. Of
course, all other resources,
such as network interfaces,
need to be allocated in a sim-
ilar way. Direct hardware ac-
cess must be ruled out. Ac-
cess to /dev/kmem or /dev/
sda must be restricted to root
processes on a specific parti-
tion.

Projects
A fairly early implementation
of this design is to be found
in the concept of jails as in-
troduced by FreeBSD [13].
Jails add partitioning of the
process space and network
infrastructure to the familiar
Unix/ Linux concept of ch-
root() jails. Privileged pro-
cesses in a jail environment
are no longer capable of per-
forming actions that affect
the whole system. For exam-
ple, it is impossible to load or
unload kernel modules,
mount filesystems, create de-
vice files, or reboot the sys-

tem within a jail environ-
ment.

The Linux VServer [8] and
OpenVZ [9], along with the
commercial variant Virtuozzo
[10], which can also be used
for Microsoft Windows, are
available for the Linux ker-
nel. Sun Solaris 10 and later
have a technically compara-
ble product that uses contain-
ers or zones [11], and this is
also available in OpenSolaris
[12], of course. Basically, the
same restrictions apply as to
FreeBSD jails. On Linux,
Linux VServer and OpenVZ
use different technical ap-
proaches, which are reflected
by different kernel patch sets.
The userspace tools also dif-
fer.

As of this writing, neither
Linux VServer nor OpenVZ
are part of the official Linux
kernel, although the modifi-
cations introduced by these
projects are quite advanced
and stable. Both projects seek
the approval of the kernel de-
velopers, and it would be
nice to see a few basic re-
quirements for virtualization
support added to the code
base.

Linux VServer
The Linux VServer project is
based on mechanisms pro-
vided by the current Linux
kernel, such as POSIX capa-
bilities for processes [15],
namespaces, resource limits,
and extended attributes for
the filesystem. However,
these POISIX features are not
sufficient alone to fulfill the
requirements. The VServer
patches add process contexts,
and support binding of pro-
cesses to network addresses.
Besides these critical exten-
sions of basic functionality,
the patches add privilege re-
strictions for all processes
within a context, based on
POSIX capabilities, as well as
the ability to assign files to a
specific context.

advertisement

COVER STORYVirtual Machines Intro

23ISSUE 70 SEPTEMBER 2006W W W. L I N U X- M A G A Z I N E . C O M

Practical applica-
tions need to handle
context-driven ac-
counting and sched-
uling, and support
for many of these
tasks is available.
Additionally,
util-vserver provides
a very useful user-
land toolbox.

OpenVZ
Although the com-
mercial Virtuozzo
by SWsoft has been
on the market for
quite some time
now, the open
source derivative of
Virtuozzo, OpenVZ,
was released just a
few months ago.
OpenVZ provides
some Linux kernel
modifications, adding a few userland
tools.

Virtuozzo gives commercial customers
a full-fledged management suite, includ-
ing a Management Console (VZMC), and
a web-based control center. For profes-
sional hosters, SWsoft offers the HSP-
complete product, a complete solution
for order processing, through provision-
ing, to billing.

Just like Linux VServer, OpenVZ intro-
duces contexts to isolate processes. Net-
work virtualization does not rely on alias
interfaces, meaning that each virtual
system can use its own firewall.

Control of the resources used by a VS
is based on user bean counters that sup-
port a high level of granularity. On the
downside, the project currently lacks in-

struments for syncing the VS filesystems,
like Linux VServer’s copy-on-write link
breaking.

Solaris Zones
Solaris zones are a Solaris 10 container
component. Sun has a lot of experience
with partitioning on large-scale Unix
systems. As far back as 1996, static par-
titioning was introduced as an option
for the E10000 machines. However, par-
titions were quasi-autarkic machines,
each with its own operating system ker-
nel.

The immediate predecessor to the cur-
rent container was the Resource Man-
ager, which was introduced to Solaris 9.
The Resource Manager allowed system
administrators to assign processes to
pools and to control the resource con-
sumption of these pools. It did not give
administrators the ability to isolate exe-
cution environments, however; that abil-
ity came later with the introduction of
zones.

The underlying technology on Solaris
Zones is very similar to that used by
Linux Vserver and OpenVZ and relies on
partitioning the operating system. Pow-
erful tools are available to install and
manage zones. Loopback mounts can be
used to sync zones, although this is not
as efficient as CoW link breaking or
UnionFS[18]. ■

Figure 3: Operating system partitioning. This is the technology

used by Linux VServer and OpenVZ, FreeBSD jails and Solaris

zones.

Hardware

Kernel

VS-1 VS-2 VS-3

Process

Process

Re
so

ur
ce

 A

Re
so

ur
ce

 B

Re
so

ur
ce

 C

Process Process

Process

Torsten Kockler is an assistant to
Professor Wilhelm Meier who
teaches operating systems and pro-
gramming languages in the Depart-
ment of Computer Science/ Micro-
system Technology of the Technical
University of Kaiserslautern in
Zweibrücken, Germany.

Professor Wilhelm Meier teaches
operating systems and program-
ming languages in the Department
of Computer Science/ Microsystem
Technology of the Technical Univer-
sity of Kaiserslautern in
Zweibrücken, Germany.

T
H

E
 A

U
T

H
O

R

[1] Popek, G.J; Goldberg, R.P; “Formal
requirements for virtualizable third
generation architectures”, Communi-
cations of the ACM, Vol. 17, July 1974:
http:// portal. acm. org/ citation.
cfm?id=361011. 361073

[2] VMware: http:// www. vmware. com

[3] Microsoft Virtual Server and
Virtual PC:
http:// www. microsoft. com/ windows/
virtualpc/ default. mspx http:// www.
microsoft. com/ windowsserversystem/
virtualserver/ default. mspx

[4] Intel virtualization technologies:
http:// www. intel. com/ technology/
computing/ vptech/

[5] AMD Pacifica:
http:// www. amdboard. com/ pacifica.
html

[6] Xen: http:// www. cl. cam. ac. uk/
Research/ SRG/ netos/ xen/

[7] Overview of virtual machines: http://
en. wikipedia. org/ wiki/ Comparison_
of_virtual_machines

[8] Linux VServer:
http:// linux-vserver. org/

[9] OpenVZ: http:// openvz. org/

[10] SW-Soft Virtuozzo:
http:// www. virtuozzo. com/

[11] SUN Solaris 10 containers:
http:// www. sun. com/ software/ solaris/
utilization. jsp http:// www. usenix. org/
events/ lisa04/ tech/ full_papers/ price/
price_html

[12] OpenSolaris zones:
http:// www. opensolaris. org/ os/
community/ zones/

[13] FreeBSD jails:
http:// www. awprofessional. com/
articles/ article. asp?p=366888&
seqNum=9 http:// docs. freebsd. org/
44doc/ papers/ jail/ jail. html

[15] POSIX / IEEE 1003.1e and 1003.2c
(withdrawn): http:// wt. xpilot. org/
publications/ posix. 1e/

[16] JVM-Spec: http:// java. sun. com/ docs/
books/ vmspec/ 2nd-edition/ html/
VMSpecTOC. doc. html

[17] Robin, J.S.; Irvine, C.E.; “Analysis of
the Intel Pentium’s Ability to Support
a Secure Virtual Machine Monitor”:
http:// www. usenix. org/ publications/
library/ proceedings/ sec2000/ full_pa-
pers/ robin/ robin. pdf

[18] UnionFS homepage:
http:// www. fsl. cs. sunysb. edu/
project-unionfs. html

INFO

Virtual Machines IntroCOVER STORY

24 ISSUE 70 SEPTEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

