
83

The Changes feature in Open-
Office.org is an essential tool for
collaborative editing. Although it

is easy to understand, this feature has a
couple of serious drawbacks. First,
Changes works best only when you are
dealing with OpenOffice.org’s native for-
mats. If your peers are using Microsoft
Office, there is no guarantee that
changes will survive back-and-forth con-
version. And if your colleagues are using
any other word processor, such as Abi-
Word, TextMaker, or KWord, you are
completely out of luck. Secondly, the
Changes feature is not the most elegant
solution out there, and it can sometimes
be quite cumbersome.

Fortunately, you don’t have to put up
with these limitations. Instead, you can
implement an alternative solution for
marking changes in a document. This
alternative is known as bracket notation.
Although bracket notation is not a new
idea, it is best explained and imple-

mented by the people behind the Get
Humanized blog [1].

Understanding Bracket
Notation
The bracket notation solution relies on a
simple set of rules that use brackets to
mark changes. Bracket notation lets you
track three types of changes: replace-
ment, deletion, and comment. There is
also insertion, but an insertion can be
considered as a form of replacement,
where you replace nothing with some-
thing. You can easily mark these modifi-
cations in a text using square brackets.

For example, to mark text for replace-
ment, place the text you want to remove
in brackets and the replacement text in
brackets immediately after it:

mankey -> m[a][o]nkey -> monkey

To mark an insertion, place empty brack-
ets where you want to place the new

text, followed by the text you wish to
insert:

mnkey -> m[][o]nkey -> monkey

To mark a deletion, place the text you
want to delete in brackets:

an monkey -> a[n] monkey -> U
a monkey

And to add a comment, place the text in
brackets after double empty brackets:

Comment: [][][Comments go here]

That’s all fine and dandy, but there is a
tiny fly in the ointment. While the
bracket notation system is simple and el-
egant, typing all the brackets and keep-
ing tabs on them can be a bit bother-
some. But despair not; you can use a set
of simple OOoBasic macros to turn the
bracket notation system into a powerful,
yet easy-to-use changes tracking tool.

Building Macros
Let’s start with the most basic macro
that allows you to insert comments or
mark the currently selected text segment
as a comment. To keep things nice and

Implementing the bracket notation system in OpenOffice.org

WORKSPACE
We’ll show you a universal system for marking changes in text docu-

ments; and along the way, you’ll get some practical experience with

writing OpenOffice marcos. BY DMITRI POPOV

LINUXUSERWorkspace: Bracket Notation

83ISSUE 72 NOVEMBER 2006W W W. L I N U X- M A G A Z I N E . C O M

tidy, start by creating a separate module
for the bracket notation-related macros.
In OpenOffice.org Writer, choose Tools |
Macros | Organize Macros | OpenOffice.
org Basic and press the Organizer button.
In the Organizer window, select the My
Macros | Standard folder and press the
New button. Give the new module a
name (for example, BracketNotation),
press OK, and then Edit. This opens the
OOoBasic IDE, where you write macros.

The first thing you have to do in the
Comment macro is define three variables
as objects: oDoc, oText, and oCursor:

Sub Comment()
Dim oDoc As Object, U

oText As Object
Dim oCursor As Object

Next, you should specify what these ob-
jects are:

oDoc=ThisComponent
oText=oDoc.Text
oCursor=oDoc.CurrentController.U
getViewCursor`

This code defines oDoc as the active
document, oText as the text in the docu-
ment, and oCursor as the currently se-
lected text. After you have completed
this definition, the next step is to convert
the selected text into a comment:

oCursor.String=U
"[][][" & oCursor.String & "]"

Finally, to make the comment easier to
locate, you can change its color to blue:

oCursor.CharColor=U
RGB(0,0,250)

The complete Comment macro is shown
in Listing 1.

The clever part is that if nothing is se-
lected, the macro simply inserts the
comment bracket, and you can add the
text later on.

Now that you know the basics, you
can easily create a macro that marks the
delete operation. This macro is almost
identical to the Comment code, with a

Figure 1: Creating a separate module for the bracket notation macros.

Figure 2: Working with macros in the OpenOffice.org Basic IDE.

01 Sub Comment()

02 Dim oDoc As Object, oText As
Object

03 Dim oCursor As Object

04 oDoc=ThisComponent

05 oText=oDoc.Text

06 oCursor=oDoc.
CurrentController.
getViewCursor

07 oCursor.String="[][][" &
oCursor.String & "]"

08 oCursor.
CharColor=RGB(0,0,250)

09 End Sub

Listing 1: Comment macro

01 Sub Remove()

02 Dim oDoc As Object, oText As
Object

03 Dim oCursor As Object

04 oDoc=ThisComponent

05 oText=oDoc.Text

06 oCursor=oDoc.
CurrentController.
getViewCursor

07 oCursor.String="[" &
oCursor.String & "]"

08 oCursor.
CharColor=RGB(250,0,0)

09 End Sub

Listing 2: Deletion macro

Workspace: Bracket NotationLINUXUSER

84 ISSUE 72 NOVEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

different character color being the only
exception (Listing 2).

Finally, you have to write a macro that
marks replacements. While it shares a
lot of code with the previous two mac-
ros, it works in a slightly different way.
Unlike the Delete and Comment macros,
the Replace macro requires some user
input: once you’ve marked the text seg-
ment you want to replace, you have to
tell the macro what you want to insert
instead. One way to do this is to add an
input box to the macro containing a sin-
gle field. When the user enters a correc-
tion in the field and presses OK, the
macro inserts the appropriate brackets
containing the correction. Adding an
input box is easy, and it requires only
three lines of code:

InputMsg="Enter the correction"
InputTitle="Correction"
InputReturn=U
InputBox (InputMsg, InputTitle)

The important bit here is the InputRe-
turn variable, which contains the actual
user input. The full Replace macro is
shown in Listing 3.

Once all three macros are in place,
save the macros and close the OOoBasic
IDE.

Finishing Touches
To make the macros easier to use, you
can add a separate Writer toolbar with
the appropriate icons. Choose Tools |
Customize, and click on the Toolbar tab.
Press the New button, give your toolbar
a name (for example, “Bracket Nota-
tion”), and select OpenOffice.org Writer
from the Save In list. To add a button to
the new toolbar, press the Add button,
select the BracketNotation macro module
in the Category pane, select the desired
macro from the Commands list, and
press Add. Repeat this procedure with
other bracket notation macros.

To make the toolbar look more pro-
fessional and easy to use, you might
want to add an icon to each button. Silk
icons [2] are particularly suited for use
in toolbars, since they are available in
the 16x16 pixels format required by
OpenOffice.org. To add an icon to one
of the buttons, select the macro from
the list of commands in the Bracket
Notation toolbar, press and hold down
the Modify button, then select Change

Icon. Press the Import button, add the
desired icon, select it in the icon list,
and press OK. Once you are satisfied
with the toolbar, press OK, and it’s ready
for use.

Final Word
Using a simple set of macros, you can
easily implement the bracket notation

system in OpenOffice Writer. Because
the edits are recorded through a system
of ordinary brackets in the text, users
with other word processing programs
will be able to see the changes – and
even implement equivalent macros for
their own environments. But in order
for this system to actually work, you
have to agree on its rules with your
peers. Make sure everyone in your
workgroup understands the rules and
their usage, and that the system itself
is not open to interpretation. And, of
course, use plain text as your working
format. ■

01 Sub Replace()

02 Dim oDoc As Object, oText As
Object

03 Dim oCursor As Object

04 oDoc=ThisComponent

05 oText=oDoc.Text

06 oCursor=oDoc.
CurrentController.
getViewCursor

07 InputMsg="Enter the
correction"

08 InputTitle="Correction"

09 InputReturn=InputBox
(InputMsg, InputTitle)

10 oCursor.String="[" &
oCursor.String & "][" &
InputReturn & "]"

11 oCursor.
CharColor=RGB(0,250,0)

12 End Sub

Listing 3: Replace macro

Figure 3: Assigning macros to the buttons on the Bracket Notation toolbar.

[1] Bracket Notation: http:// www.
humanized. com/ weblog/ 2006/ 06/ 30/
collaboration_made_simple_with_
bracket_notation/

[2] Silk Icons: http:// www. famfamfam.
com/ lab/ icons/ silk/

INFO

Dmitri Popov holds a degree in Rus-
sian language and computer lin-
guistics. He has been working as a
technical translator and freelancer
contributor for several years. He has
published over 500 articles covering
productivity software, mobile com-
puting, web applications, and other
computer-related topics. His articles
have appeared in Danish, British,
US, and Russian magazines and
websites.

T
H

E
 A

U
T

H
O

R

LINUXUSERWorkspace: Bracket Notation

85ISSUE 72 NOVEMBER 2006W W W. L I N U X- M A G A Z I N E . C O M

