
46

principle of free software, Zope has
always had the support of a strong com-
munity. Experienced Zope programmers,
and newcomers, organized major and
minor developer sessions (so-called
“sprints”) all over the world to keep the
project on the move. Methods such as
extreme programming (XP) and unit
testing brought quality assurance to the

project. Also, the fact that
Zope version 2 is a stable and
successful product gave
developers enough time to
optimize key features in mul-
tiple iteration steps. And
nobody complained if code
had to be ditched to make
way for better implementa-
tions.

Features
The core of Zope X3 is its
component architecture. Dif-

that supported flexible modification of
individual components. The experience
gained developing with the CMF was
then supposed to be incorporated into
the Zope development process.

Instead of reworking the labyrinthine
Zope source code, the Zope Corporation
opted for a clean sheet three years ago.
Because of its firm commitment to the

S
ince the release of the Plone [1]
content management system
(CMS), it has been hard to imag-

ine a world of free web application
servers without Zope [2]. Python, the
language Zope is primarily written in,
brings object-oriented and modular
source code to the world of Zope, along
with the kind of agility and flexibility
more typically associated with web
scripting languages.

From the CMF to New
Developments
Zope is a popular platform for CMS.
Most free Zope CMS systems (such as
Plone [1], Silva [3] and CPS [4]) use a
Zope product known as the Content
Management Framework (CMF). The
CMF framework for Zope 2 not only had
the tools necessary for developing a con-
tent management system, it also pro-
vided a component-based architecture

Zope, a web application server written in Python, is an extremely popular open

source content management system platform. The newly developed version X3.0

was released just recently. We’ll show you what’s new in Zope X3.0.

BY PHILIPP VON WEITERSHAUSEN

FORMULA X
Developing Web Applications with Zope X3

FORMULA X

Schlagwort sollte hier stehenLINUX USER Zope X3.0REVIEWS

46 ISSUE 54 MAY 2005 W W W . L I N U X - M A G A Z I N E . C O M

01 from zope.interface import Interface

02 from zope.schema import Text, TextLine

03 class IBuddy(Interface):

04 """Information about a buddy"""

05

06 first = TextLine(title=u"First name")

07 last = TextLine(title=u"Last name")

08 address = Text(title=u"Address")

09 postal_code = TextLine(title=u"Postal
code")

Listing 1: Interfaces (interfaces.py)

ferent components are
assigned responsibility for
specific tasks. For instance,
components manage tasks
such as data storage, data
processing, and presentation.

Many readers will be famil-
iar with the ZODB (Zope
Object Database) from Zope
2. The ZODB allows objects
to be persisted fairly trans-
parently in the database, and

47

REVIEWSZope X3.0

47ISSUE 54 MAY 2005W W W . L I N U X - M A G A Z I N E . C O M

01 from persistent import Persistent

02 from zope.interface import implements

03 from buddydemo.interfaces import IBuddy

04

05 class Buddy(Persistent):

06 implements(IBuddy)

07

08 def __init__(self, first='', last='',

09 address='', postal_code=''):

10 self.first = first

11 self.last = last

12 self.address = address

13 self.postal_code = postal_code

Listing 2: Content Components (buddy.py)

tion system, and support
for XML RPC, round off
the Zope palette.

Paradigm Change
Zope X3 removes some of
the issues that affected
Zope 2. For example, the
earlier version expected
class instances to provide
the attributes and meth-
ods they needed to inter-
act with Zope. This led to
developers overloading
objects with a variety of
methods, limiting porta-
bility and making subse-

quent changes to the functions difficult.
Zope X3, on the other hand, keeps

individual components as simple as pos-
sible and adds components if it needs to
add functionality. Zope’s architecture
defines the following component types:
• Content components do not typically

have methods, but just properties
which they use to publish stored data.
Data types and values are typically
specified using a data schema.

• Utilities are context-independent com-
ponents that perform a specific task,
such as database connections, index-
ing, or email delivery.

• Adapters are probably the most power-
ful components. Adapters allow devel-
opers to add functionality to existing
components without having to modify
the components themselves. This
technique is extremely useful if a
framework requires a specific API.

Developers can leave the original com-
ponent as is and implement an
adapter that interfaces between the
component and the required API.

• Views visualize the other components
for the user. An example of this is a
web browser, which uses views that
render HTML. A view is actually a
special kind of adapter that gives the
other objects a feature they do not
possess natively (presentation).

Abstract Contract
To allow components to remain indepen-
dent of the implementation, the compo-
nents are not referenced by class.
Instead, interfaces are used to describe
the functionality a component provides.
Interfaces are a kind of formal contract
that guarantees the provision of a spe-
cific function in the form of an API.
Because the Python language does not
use interfaces, Zope had to implement
them from scratch.

Listing 1 shows an interface from a
sample application that manages private

at the same time provides enterprise-
level features such as transactions, revi-
sions, and pluggable storage back-ends.
ZEO (Zope Enterprise Objects) even sup-
port clusters of multiple Zope instances,
thus providing ease of scalability.

A flexible security system allows the
user to assign permissions to protect
components, properties, and methods.
Users wanting to access protected com-
ponents need to be authorized. Modular
components authenticate and authorize
users, giving operators the ability to
adapt the security to the situation with-
out reworking the underlying appli-
cation.

Zope not only has the localization
tools developers need to provide interna-
tional support for applications, Zope is
itself fully international. A full range of
features, such as SMTP or sendmail-
based email services, an event notifica-

Zope X3.0REVIEWS

48 ISSUE 54 MAY 2005 W W W . L I N U X - M A G A Z I N E . C O M

01 <configure
02 xmlns="http://namespaces.

zope.org/zope"
03 xmlns:browser="http://

namespaces.zope.org/browser">
04
05 <content class=

"buddydemo.buddy.Buddy">
06 <require
07 permission="zope.View"
08 interface="buddydemo.

interfaces.IBuddy" />
09 <require
10 permission=

"zope.ManageContent"
11 set_schema="buddydemo.

interfaces.IBuddy" />

12 </content>
13
14 <browser:addform
15 schema="buddydemo.

interfaces.IBuddy"
16 label="Add a new buddy

address"
17 content_factory=

"buddydemo.buddy.Buddy"
18 arguments="first last

address zipcode"
19 name="AddBuddy.html"
20 permission=

"zope.ManageContent" />
21
22 <browser:editform
23 schema="buddydemo.

interfaces.IBuddy"
24 label="Edit buddy address"
25 name="edit.html"
26 menu="zmi_views"

title="Edit"
27 permission=

"zope.ManageContent" />
28
29 <browser:addMenuItem
30 class="buddydemo.buddy.

Buddy"
31 title="Buddy"
32 permission=

"zope.ManageContent"
33 view="AddBuddy.html" />
34
35 </configure>

Listing 3: Configuration (configure.zcml)

When development work on Zope 3
started, it quickly became clear that the
project would need to drop API compati-
bility to Zope 2. The “X” version prefix
was originally intended to indicate the
“experimental” nature of the project. Of
course, the stable Zope X3.0 version is
anything but experimental, but the “X”
remains in the name to warn users that
Zope X3 is not compatible with the pre-
vious version.

Xs and Us

Figure 1: This editing form was generated automatically by

reference to the data schema for the content component.

addresses. The interface is a data
schema that describes content compo-
nents – the address data for a buddy.
Storing the postal code allows you to
search for city and state information
later.

In Listing 1, the Python class state-
ment is used to define an interface, as
Python does not have interfaces natively.
Additionally, Zope does not distinguish
between an interface that uses methods
to describe functionality and an interface
that defines a data schema.

Simple Content
Components
The task of writing a persistent class in
Zope 2 was quite complex. At a mini-
mum, you needed the metatype, security
declarations, and instantiating methods
to generate the new instances required
by the web interface. In Zope 3, you’ll be
happy to hear, the requirements for writ-
ing a persistent class are much easier
than in Zope 2. Persistent objects only
need to handle the data passed to them;
everything else is handled by other com-
ponents.

Listing 2 shows a working implemen-
tation of the IBuddy interface shown in
Listing 1. Note that the class inherits
from Persistent to ensure that its
instances are automatically stored in the
ZODB. To ensure the class against other

components, you also need to specify
that the class implements the IBuddy
interface.

XML-based Configuration
Zope 2 expected to import libraries from
the Products directory. The initialization
module for each package (__init__.py)
used to contain the component registra-
tion. Other elements such as security
declarations or browser view configura-
tions ended up in the application code.

Zope X3 takes a different approach.
Zope extensions are now just simple
Python packages, and you can install
them wherever you like – providing they
are in the PYTHONPATH. Everything else
that has to do with component configu-
ration, such as the registration itself,
security declarations, or browser views,
is now wired to the configuration file.
This approach gives developers an
important advantage: the ability to dis-
able components temporarily or perma-
nently without modifying the code.

Listing 3 shows the typical configura-
tion directives for a schema-based con-
tent component; the example only han-
dles the security declarations for reading
and writing data for buddy instances.
The file then goes on to define two
forms. One form generates buddy
objects; the other edits buddy objects.

Zope has the ability to automatically

generate a form from the data schema
defined in the IBuddy interface. Thus –
as Figure 1 shows – a schema, a simple
persistent implementation, a few config-
uration directives, and no HTML at all
give you a component that will run in a
browser.

The last directive in Listing 3 adds an
entry to the Zope web interface menu to
allow users to create buddies. The fact
that this directive exists at all exempli-
fies an important basic principle of the
Zope 3 philosophy: “Explicit is better
than implicit.” Although developing
Zope 3 software may mean more typing,
at least you will have an easier time
reading the code in six months’ time.

Future
Zope has had a massive following for
quite a while now thanks to its features,
its flexibility, and its reliance on Python;
and it looks like this community will
continue to grow. Use of the software for
large-scale projects and in large enter-
prises has helped Zope mature. Zope X3
is a massive step forward for the project.
This said, it may take some time for
Zope X3 and the new paradigm to
spread, so we can expect Zope 2 to be
around for quite a while yet. Thanks to
the Five project [6], which supports
gradual and considered migration to
Zope X3 despite its API incompatibilities
with Zope 2. ■

REVIEWSZope X3.0

49ISSUE 54 MAY 2005W W W . L I N U X - M A G A Z I N E . C O M

[1] Plone: http://plone.org

[2] Zope community website:
http://zope.org

[3] Silva: http://infrae.com/products/silva

[4] CPS: http://www.nuxeo.org/cps

[5] Zope X3 download:
http://zope.org/Products/ZopeX3

[6] Five: http://codespeak.net/z3/five

INFO

Philipp von Weiters-
hausen studies
physics in Dresden,
Germany. He is also
a freelance software
developer and a
consultant. Phillipp
also serves as a member of the
Zope 3 development team and is
the author of the book Web Compo-
nent Development with Zope 3.

TH
E

A
U

TH
O

R

Installing Zope on Linux is simple. You
will need the current Python Version
2.3.4 with Zlib support. Zope may be
written in Python for the most part, but
some modules were implemented in C
for reasons of speed. You will need to
build the application before you can
install. The tar.gz archive has a configure
script that will automatically generate a
Makefile for the build and install
process.

The Zope libraries are normally installed
in /usr/local/Zope-3.0.x. Of course, you
can change this location with the --prefix
parameter in the configure script. To
launch an instance of the server, you first
need to create a directory tree for the
instance. This directory tree is not only
used for storing the object database for
the Zope instance (ZODB), it is also used
for storing ancillary libraries specifically
required by the instance. Of course,
a Zope installation can use multiple

parallel instances.

The mkzopeinstance script in the bin
directory creates an instance directory.
After specifying the path for the instance
and the credentials for a temporary
administrative account, you can launch
the instance by typing runzope (in the
bin subdirectory for the instance). The
configuration for the server, the HTTP
and FTP server ports, and various log-
ging options are located in
etc/zope.conf. The configuration file uses
the same format as the Apache server.
By default, the HTTP server instance will
use port 8080 and the FTP server will use
port 8021.

After launching Zope by typing runzope,
you can press Ctrl-C to quit. As this is
impractical for a server application, you
can also run the zopectl script (also in
the bin directory of the instance) to con-
trol the server; this is similar to apachectl
for the Apache server.

Installation and Configuration

