
easy-to-process format, like XML. A good
example of this is what’s called RSS,
which is an XML format. RSS stands for
Really Simple Syndication, and it’s a way
for news sites to provide up-to-the-
minute headlines to other sites and to
programs designed to display the infor-
mation. A large number of sites provide
their headlines in RSS format; BBC pro-
vides all of its sections in RSS. Many
programs deal with RSS headlines;
Mozilla Firefox, for example, lets you
create “live bookmark” folders that auto-
matically fill with RSS headlines.

Another method for retrieving infor-
mation is so called “screen scraping” –
downloading the HTML page just like a
web browser does and then stripping out
just the sections that we are interested
in. LiveJournal provides some informa-
tion – a list of a user’s posts, for example
– in RSS XML format, and they request
that users use that format whenever pos-
sible. Other information can only be
retrieved by screen scraping: a user’s
friends list, for example.

Because LiveJournal blogs contain a
fairly large amount of information, you
could mine the blogs for a wide variety
of different kinds of data. In this exam-
ple, we’re going to write a program that
compiles comments from a single Live-
Journal user; that is, the program will
download every comment the user has
made in any of his friends’ journals and
display the comments. Of course, it
won’t find messages left in blogs that are
not on the user’s friends list, nor will it
find private messages.

Web spiders can only find publicly
accessible information, so this applica-
tion will only find information that the
target user has already agreed to make
public. Of course, that could still be a lot
of information in some cases. It’s easy to
extend this technique for almost any
type of public information available on
the web.

Spider Plan
The program will take a LiveJournal
user’s name and download his friends

Ruby is a scripting language devel-
oped by Yukihiro Matsumoto and
released under the GPL. The Ruby

language has an excellent set of string
manipulation and networking libraries,
making it a great choice for writing web
spiders. If you are not familiar with web
spiders, they are programs designed to
automatically traverse the web. Search
engines use web spiders to add web
pages to their index; companies like Net-
craft use spiders to get statistics on web
servers.

You can use a web spider to find infor-
mation automatically from almost any
website; in this article, we’ll discuss how
to use Ruby to retrieve information from
LiveJournal, a popular weblog provider.
You can extend these techniques to virtu-
ally every website that provides public
information.

Getting Web Data
Programmers have several ways of
retrieving information from a website.
Some sites provide information in an

Ruby is a very elegant language, and

it’s harmonious – the parts work

together effectively. Ruby also signifi-

cantly reduces a developer’s burden.

We’ll show you how to use Ruby to

build a quick and simple web spider

application. BY DAVID BERUBE

Building a Web Spider with Ruby

Spider on the Web

64 February 2005 www.linux-magazine.com

Ruby Web SpidersPROGRAMMING

w
w

w
.spidertim

.com

list. The program will then retrieve a list
of posts for the user and for all of the
user’s friends and download all of those
posts. It will then parse the HTML files
and print the comments made by our tar-
get user to STDOUT, separated by three
dashes on a line.

The Tools We Have
What tools are available to us? The first
is the Ruby net/http library, which
comes with the Ruby distribution. The
Ruby net/http library lets us access the
HTTP protocol through an object ori-
ented interface. In order to download
webpages, we must first make a connec-
tion to the server by calling the
Net::HTTP.new method, which takes a
server address and a port number and
returns a Net::HTTP object.

We can then call the get method on the
object to retrieve a page. The get method
returns an array; the first element in the
array is a HTTPResponse object and the
second element is a string containing the
body of the result – in other words, the
contents of the page we asked for. The
HTTPResponse object contains the head-
ers and also the body of the result. Both
methods are included for compatibility
reasons, as well as for simplicity – often,

you are only interested in the data of a
response and not in the HTTP status
code.

Other powerful tools we can make use
of are the split and each methods. The
split method takes a string and splits it
into an array, delimited by either a regu-
lar expression or a string; it is similar to
the split function in Perl or PHP. Notice,
however, how it can be chained with
other methods, as it is in our example.
This improves readability.

The each method takes an array and
passes each element to a block of code.
Incidentally, the block syntax is generic,
and you can use this syntax in your own
functions. The block of code is enclosed
by a do…end pair, and the parameters
are surrounded by pipe symbols. The
each method is very similar to foreach
methods in other languages – notice,
however, that it is not a language con-
struct, as it is in most languages, but a
method, and as such, you could easily
construct your own iterator.

Webspidering LiveJournal
We have two scripts involved in parsing
a weblog. The first, parse_user.rb (see
Listing 1), takes an argument on the
command line: the user you wish to

monitor. It then downloads the list of
people that the user has marked as
friends, on the theory that he is most
likely to comment on the blogs of those
users; if you wish, you could search the
friends of those friends, and their
friends, and so on. It repeatedly calls the
second script, parse_journal.rb (see List-
ing 2), once for each friend.

The second script takes two argu-
ments: which blog to parse, and which
user’s comments we are looking for. The
second script can also be called by itself,
should you only want to search a single
user’s blog for comments by another
user.

The first script retrieves a list of friends
by downloading the LiveJournal “user
information” page for that user; the user
information page is a webpage that con-
tains a user’s profile, and, importantly
for us, a link to the user information
page of each of his friends.

The script searches for those links,
takes the user name for each of his
friends, and adds the friends to an array.
When it’s done, it then calls the second
script for each of those friends, telling
the second script to retrieve every com-
ment by the target user in the friend’s
blog. It also takes the output of the sec-
ond script and writes it to a file for easy
access.

The second script first downloads the
RSS newsfeed for the user passed to it –
conveniently, this contains, among other
things, a link to each of the user’s posts.
It retrieves all of these links and places
them in an array. It then iterates over the
array, grabbing the page for each one,
and then iterating over each line of each
page.

The line processing is split into two
parts. First, the script waits until it finds
a post by the appropriate user, signaled
by a link to use his information page. At
that point, the next line resembling a
post is presumed to be a comment by
that user; the line is detected, then the
comment and the link are extracted.

The comment is transformed to be
more user friendly; the sequence
 is transformed into newlines, and
HTML tags, and other unimportant infor-
mation is stripped out. After this, the
comment is printed out, and the script
starts looking for another comment by
the target user.

65www.linux-magazine.com February 2005

PROGRAMMINGRuby Web Spiders

01 require 'net/http'
02
03 h = Net::HTTP.new(

'www.livejournal.com', 80)
04 friend_arr = []
05 person = ARGV[0]
06
07 resp, data =

h.get("http://www.livejournal.
com/userinfo.bml?user=#{person
}",nil)

08
09 print "Friend list for

#{person}\n"
10
11 data.split("\n").each do

|line|
12 line.split(",").each

do |token|
13 if token =~

/userinfo.bml\?user=([^'&]*)\'
/

14
friend_arr.push $1

15 print "#$1\n"
16 end
17 end
18 end
19
20 print "\n"
21
22 friend_arr.each do |friend|
23
24 print "Parsing #{friend}'s

journal for #{person}'s
comments...\n";

25 f =
File.new("#{person}_#{friend}.
txt","w")

26 f.puts `ruby
parse_journal.rb #{friend}
#{person}`

27 f.close
28 end

Listing 1: parse_user.rb

and two, the screen scraping code. The
networking code can have problems,
since the Internet is inherently unreli-
able: pages move, machines crash,
requests time out, and so forth. In order
to catch these types of errors, you can
get a wealth of information from the
HTTPResponse object returned by the
Net:HTTP.get function.

Since our example only retrieves a lim-
ited set of URLs, errors such as moved
pages are less likely. If they were to
occur, they would likely signal a change
in LiveJournal’s hierarchy and require a
rewrite. However, for many other spi-
ders, this is not true, and it would be
wise to plan for contingencies. What
should your spider do, for example, if
the server returns an HTTPRequestTime-

Out error? You may wish to try down-
loading again; alternatively, you might
wish to ignore the error and take some
other action.

The screen scraping code frequently
causes problems, both during develop-
ment and after develolpment. During
development, it is wise to download a
copy of the page you are attempting to
parse and work on it from your local
machine. This increases the speed of the
development and allows you to focus on
retrieving the appropriate pieces of the
code you are interested in. It is also wise
to use the least restrictive parsing possi-
ble; include as little information as you
can in your regular expression and still
be sure to get the information you seek.
That way, your code will break less often
because of changes to the target site.

Conclusion
Spiders are powerful, and Ruby is a great
language to write them in. Of course, like
most powerful tools, spiders must be
used with care. Stories of badly behaved
spiders overloading web servers with
requests are common. You should ensure
your spider does not cause problems for
site administrators. In some cases, they
may have posted instructions on how
automated services may use their site; if
so, take care to follow them. They are
providing you with a free service, and
they are not required to continue. ■

As you can imagine, this whole
process is extremely sensitive to the
exact format of the page, and this illus-
trates one of the basic problems with
screen scraping; since the format of the
data can and does change, you occasion-
ally have to update your spider to keep it
working. In this case, changes to the for-
mat of the LiveJournal can require
changes to the spider for it to properly
process a blog. Notice, however, that the
spider is generally easy to modify when
changes occur.

When Things Go Wrong
Errors can occur in a number of places
while developing and using a spider.
Most often, though, errors crop up in
two places: one, the networking code,

66 February 2005 www.linux-magazine.com

Ruby Web SpidersPROGRAMMING

01 require 'net/http'
02
03 h = Net::HTTP.new(

'www.livejournal.com', 80)
04
05 url_array = []
06 person = ARGV[0]
07 watch_for = ARGV[1]
08
09 resp, data =

h.get("http://www.livejournal.
com/users/#{person}/data/rss",
nil)

10
11 data.split("\n").each do

|line|
12 if line =~

/<comments>http:\/\/www.livejo
urnal.com([^<]*)<\/comments>/

13 url_array.push $1
14 end
15 end
16
17 url_array.each { |url|
18 response, data = h.get(url,

nil)
19 logging = false
20 data.split("\n").each do

|line|
21 if line =~ /<a

[^>]*href='http:\/\/www.livejo
urnal.com\/users\/([^"]*)\/'><
b>/

22 if $1 ==

watch_for
23

print "\n---\n"
24

logging= true
25 else
26

logging = false
27 end
28
29 end
30 if line =~ /<a

href='(http:\/\/www.livejourna
l.com\/users\/[^\/]*\/[^']*thr
ead[^']*)'>.*<\/td><\/tr><tr><
td>(.*)<p style='margin:/ and
logging

31 url = $1
32 comment = $2
33

comment.gsub!('
',"\n")
34

comment.gsub!(/<\/*[^>]*>/,'')
35

comment.gsub!('(Reply to this)
(Parent)','')

36 print
"#{url}\n#{comment}"

37
38

logging=false
39 end
40 end
41 }

Listing 2: parse_journal.rb

[1] Ruby Documentation http://www.
ruby-doc.org/

[2] Programming Ruby – a free ruby eBook
http://www.rubycentral.com/book/

[3] A well-documented web spider tutorial
http://www.searchlores.org/
phpregexspider.htm

INFO

David Berube is a self-
employed software
developer, writer, and
speaker. He typically
develops using a
blend of client-side
Microsoft and server-
side open source
technologies – like Ruby. His article,
“Databases and Dynamic Ruby
Classes,”appeared in the in the
December 2004 Dr Dobb’s Journal.You
can read more of his articles at http://
berubeconsulting.com/.

T
H

E
 A

U
T

H
O

R

